Navigation und Service

Zielgruppeneinstiege

Hinweis zur Verwendung von Cookies

Cookies erleichtern die Bereitstellung unserer Dienste. Mit der Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen zum Datenschutz erhalten Sie über den folgenden Link: Datenschutz

OK

Virologische Basisdaten, SARS-CoV-2

SARS-CoV-2 (Severe acute respiratory syndrome coronavirus type 2) ist ein neues Coronavirus (Genus: Betacoronavirus, Subgenus: Sarbecovirus) das Anfang 2020 als Auslöser der COVID-19 Erkrankung identifiziert wurde (Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, 2020). Coronaviren sind unter Säugetieren und Vögeln weit verbreitet. Sie werden der Virusfamilie Coronaviridae zugeordnet (Unterordnung: Cornidovirineae, Ordnung: Nidovirales, Bereich: Riboviria), in der die große Unterfamilie Orthocoronavirinae vier Gattungen (Genera) umfasst: Alpha-, Beta-, Gamma-, und Deltacoronavirus (Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, 2020). Aufgrund ihrer Fähigkeit zur homologen Rekombination können Coronaviren relativ leicht ihr Wirtsspektrum erweitern und die Artengrenze überspringen (Graham and Baric, 2010). Die sieben bekannten humanpathogenen Coronavirus-Spezies (HCoV) fallen in zwei Genera: Alphacoronavirus (HCoV-229E, HCoV-NL63) und Betacoronavirus (HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, SARS-CoV-2). Vier dieser Spezies zirkulieren weltweit endemisch: HCoV-229E, HCoV-NL63, HCoV-HKU1 und HCoV-OC43. Sie verursachen vorwiegend milde Erkältungskrankheiten, können aber mitunter schwere Pneumonien hervorrufen, vor allem im frühen Kindesalter sowie bei alten und immunsupprimierten Menschen (Fehr and Perlman, 2015). SARS-CoV, MERS-CoV und SARS-CoV-2 sind erst vor kurzer Zeit aus tierischen Reservoirs auf den Menschen übergetreten (Cui et al., 2019). Infektionen mit diesen „emerging pathogens“ können zu schweren Erkrankungen mit tödlichem Verlauf führen.

Coronaviren sind umhüllte RNA-Viren und bilden Virionen mit einem Durchmesser von 80-140 nm (Kaniyala Melanthota et al., 2020). Sie verfügen über ein einzelsträngiges RNA-Genom positiver Polarität von rund 30 Kilobasen Länge, das größte bekannte Genom aller RNA-Viren. Dieses kodiert für nichtstrukturelle Proteine, die für die RNA-Replikation zuständig sind, sowie für die vier Strukturproteine S, E, M und N. Die S-, E- und M- Proteine sind in die Virusmembran eingelagert, die das Nucleokapsid umhüllt, welches sich aus N-Protein (Nucleoprotein) und Virusgenom zusammensetzt (Fehr and Perlman, 2015). Das S (Spike) - Protein ist für den Eintritt in die Wirtszelle zuständig und besteht aus zwei Untereinheiten: Die S1-Untereinheit enthält die Receptor binding domain (RBD), die an den Wirtszellrezeptor bindet; die S2-Untereinheit vermittelt danach die Fusion von Virushülle und Zellmembran. Das Spike-Protein induziert neutralisierende (protektive) Antikörper und ist deswegen für die Impfstoffentwicklung von höchstem Interesse (Enjuanes et al., 1995; Liu et al., 2020). Seit Beginn der Zirkulation von SARS-CoV-2 im Menschen erwerben die Viren eine zunehmende Anzahl von polymorphen Nukleotidpositionen in verschiedenen Leserastern des viralen Genoms (wie z.B. nsp2, nsp6, RDRP, S, ORF3A, ORF8 und N), anhand derer die Viren in Clades bzw. Linien unterteilt werden können. Es wird derzeit intensiv beforscht ob bzw. in welcher Form sich bestimmte Mutationen auf die Eigenschaften des Virus wie z.B. Übertragbarkeit, Virulenz oder Immunogenität auswirken. Eine aktuelle Publikation beschreibt die Dynamik der SARS-CoV-2 Clades in europäischen Ländern (Alm et al., 2020).

SARS-CoV-2 verwendet (ebenso wie SARS-CoV und HCoV-NL63) das transmembranäre Enzym ACE-2 als Rezeptor, um in die Wirtszellen zu gelangen; unterstützt wird der Zelleintritt durch die zelluläre Protease TMPRSS2 und andere Proteasen (Hoffmann et al., 2020). ACE-2 und TMPRSS2 werden auf hohem Niveau im Nasenepithel koexprimiert, wodurch man sich die effiziente Vermehrung in und Ausscheidung von SARS-CoV-2 aus den oberen Atemwegen erklärt (Sungnak et al., 2020). Über hohe ACE2 Dichte wurde nicht nur im Respirationstrakt, sondern z.B. auch auf Enterozyten, Gefäßendothelzellen, Nierenepithel und Myokardzellen berichtet (Hamming et al., 2004; Hikmet et al., 2020; Varga et al., 2020; Ziegler et al., 2020; Zou et al., 2020). Histopathologische Studien zeigten einen Organtropismus u.a. für Lunge, Darm, Niere, Herz und ZNS (Puelles et al., 2020; Tavazzi et al., 2020; Xiao et al., 2020). Klinisch präsentiert sich die SARS-CoV-2 Infektion in vielen Fällen pulmonal im Sinne einer interstitiellen Pneumonie, die durch acute respiratory distress syndrome (ARDS) kompliziert werden kann. Neben der Lunge sind aber häufig andere Organsysteme betroffen, was sich in einem breiten Spektrum z.T. schwerwiegender extrapulmonaler Manifestationen äußert (Gupta et al., 2020). Zugrunde liegende Pathomechanismen beinhalten: (i) Zytolyse, d.h. direkte Schädigung der Wirtszellen durch das replizierende Virus, (ii) eine dysregulierte, überschießende Immunantwort, die zu einem lebensgefährlichen Zytokinsturm führen kann (Schulte-Schrepping et al., 2020) und (iii) eine Endothelschädigung, die mit Dysregulation des Renin-Angiotensin Systems einhergehen kann und z.B. thrombo-embolische Komplikationen nach sich zieht (Ackermann et al., 2020; Teuwen et al., 2020).

Referenzen

Ackermann, M., Verleden, S.E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., Vanstapel, A., Werlein, C., Stark, H., Tzankov, A., et al. (2020). Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med 383, 120-128.

Alm, E., Broberg, E.K., Connor, T., Hodcroft, E.B., Komissarov, A.B., Maurer-Stroh, S., Melidou, A., Neher, R.A., O'Toole, A., Pereyaslov, D., et al. (2020). Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020. Euro Surveill 25.

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, V. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5, 536-544.

Cui, J., Li, F., and Shi, Z.L. (2019). Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17, 181-192.

Enjuanes, L., Smerdou, C., Castilla, J., Anton, I.M., Torres, J.M., Sola, I., Golvano, J., Sanchez, J.M., and Pintado, B. (1995). Development of protection against coronavirus induced diseases. A review. Adv Exp Med Biol 380, 197-211.

Fehr, A.R., and Perlman, S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 1282, 1-23.

Graham, R.L., and Baric, R.S. (2010). Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol 84, 3134-3146.

Gupta, A., Madhavan, M.V., Sehgal, K., Nair, N., Mahajan, S., Sehrawat, T.S., Bikdeli, B., Ahluwalia, N., Ausiello, J.C., Wan, E.Y., et al. (2020). Extrapulmonary manifestations of COVID-19. Nat Med 26, 1017-1032.

Hamming, I., Timens, W., Bulthuis, M.L., Lely, A.T., Navis, G., and van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203, 631-637.

Hikmet, F., Mear, L., Edvinsson, A., Micke, P., Uhlen, M., and Lindskog, C. (2020). The protein expression profile of ACE2 in human tissues. Mol Syst Biol 16, e9610.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A., et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278.

Kaniyala Melanthota, S., Banik, S., Chakraborty, I., Pallen, S., Gopal, D., Chakrabarti, S., and Mazumder, N. (2020). Elucidating the microscopic and computational techniques to study the structure and pathology of SARS-CoVs. Microsc Res Tech.

Liu, L., Wang, P., Nair, M.S., Yu, J., Rapp, M., Wang, Q., Luo, Y., Chan, J.F., Sahi, V., Figueroa, A., et al. (2020). Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450-456.

Puelles, V.G., Lutgehetmann, M., Lindenmeyer, M.T., Sperhake, J.P., Wong, M.N., Allweiss, L., Chilla, S., Heinemann, A., Wanner, N., Liu, S., et al. (2020). Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med 383, 590-592.

Schulte-Schrepping, J., Reusch, N., Paclik, D., Bassler, K., Schlickeiser, S., Zhang, B., Kramer, B., Krammer, T., Brumhard, S., Bonaguro, L., et al. (2020). Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell.

Sungnak, W., Huang, N., Becavin, C., Berg, M., Queen, R., Litvinukova, M., Talavera-Lopez, C., Maatz, H., Reichart, D., Sampaziotis, F., et al. (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 26, 681-687.

Tavazzi, G., Pellegrini, C., Maurelli, M., Belliato, M., Sciutti, F., Bottazzi, A., Sepe, P.A., Resasco, T., Camporotondo, R., Bruno, R., et al. (2020). Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail 22, 911-915.

Teuwen, L.A., Geldhof, V., Pasut, A., and Carmeliet, P. (2020). COVID-19: the vasculature unleashed. Nat Rev Immunol 20, 389-391.

Varga, Z., Flammer, A.J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A.S., Mehra, M.R., Schuepbach, R.A., Ruschitzka, F., and Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417-1418.

Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., and Shan, H. (2020). Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 158, 1831-1833 e1833.

Ziegler, C.G.K., Allon, S.J., Nyquist, S.K., Mbano, I.M., Miao, V.N., Tzouanas, C.N., Cao, Y., Yousif, A.S., Bals, J., Hauser, B.M., et al. (2020). SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 181, 1016-1035 e1019.

Zou, X., Chen, K., Zou, J., Han, P., Hao, J., and Han, Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 14, 185-192.

Stand: 10.09.2020

Zusatzinformationen

Aktualisiert

Gesundheitsmonitoring

In­fek­ti­ons­schutz

Forschung

Kom­mis­sio­nen

Ser­vice

Das Robert Koch-Institut ist ein Bundesinstitut im Geschäftsbereich des Bundesministeriums für Gesundheit

© Robert Koch-Institut

Alle Rechte vorbehalten, soweit nicht ausdrücklich anders vermerkt.