Navigation und Service


Abstract zur Publikation: Photo-induced crosslinking of prion protein oligomers and prions

Piening N, Weber P, Hogen T, Beekes M, Kretzschmar HA, Giese A (2006): Photo-induced crosslinking of prion protein oligomers and prions.
Amyloid 13 (2): 67-77.

Prion diseases are caused by a unique type of infectious agent, which is thought to consist of a misfolded β-sheeted form of the α-helical cellular prion protein (PrPC). This misfolded isoform (PrPSc) tends to form insoluble amyloid-like aggregates, impeding classical structural analysis by X-ray crystallography or NMR. Intermolecular crosslinking may provide a means of stabilizing notoriously elusive oligomers for further analysis and may be used for analyzing aggregate architecture by characterising intermolecular contact sites. Using a photo-induced crosslinking method (PICUP), aggregates of recombinant PrP (rPrP) and PrPSc were linked at interacting surfaces via amino acid side chains. The degree of crosslinking within PrP aggregates was adjustable using varying light intensities and could efficiently be monitored by fluorescence correlation spectroscopy. Specific intermolecular crosslinking of PrPSc molecules was achieved even in crude brain homogenate. Functional studies showed that stabilized aggregates of rPrP did not loose their capacity to induce further protein aggregation and crosslinking of PrPSc did not alter significantly the level of infectivity, indicating that photo-induced covalent linkage of PrPSc does not destruct surfaces important for prion propagation.







Das Robert Koch-Institut ist ein Bundesinstitut im Geschäftsbereich des Bundesministeriums für Gesundheit

© Robert Koch-Institut

Alle Rechte vorbehalten, soweit nicht ausdrücklich anders vermerkt.