Evaluation unterschiedlicher Impfstrategien zur Prävention von Pneumokokken-Infektionen bei älteren Erwachsenen: Ergebnisse eines dynamischen Transmissionsmodells

Alexander Kuhlmann¹

¹ Martin-Luther-Universität Halle-Wittenberg

Nachwuchsgruppe Gesundheitsökonomie / Versorgungsforschung

Halle (Saale)

Halle (Saale) 28.09.2023

Erklärung zu Interessenkonflikten:

Alexander Kuhlmann

Es bestehen keine Interessenkonflikte.

Inhaltsverzeichnis

Abbildungsverzeichnis	
1 Hintergrund	
1.1 Public Health Relevanz	
1.2 Notwendigkeit effektiverer Impfstrategien bei älteren Er	wachsenen 1
2 Untersuchungsziel und Forschungsfragen	
3 Methoden	5
3.1 Modellstruktur und methodischer Rahmen	5
4 Modellparameter	
4.1 Transmission	
4.1.1 Physische Kontaktrate	2
4.1.2 Übertragungswahrscheinlichkeit pro Kontakt	2
4.1.3 Dauer der Trägerschaft	2
4.1.4 Wettbewerbsparameter	3
4.2 Pneumokokken-Infektionen	3
4.2.1 Case-Carrier-Ratios invasiver Pneumokokken-Erkrar	ıkungen3
4.2.2 Case-Carrier-Ratios nichtinvasiver ambulant erworb	ener Pneumokokken-Pneumonien4
4.2.3 Letalität	4
4.3 Impfquoten und Wirksamkeit der Vakzinen	5
4.3.1 Impfquoten	5
4.3.2 Wirksamkeit	5
4.4 Kosten	
4.4.1 Preise der Impfungen	7
4.4.2 Direkte Krankheitskosten	7
4.4.3 Indirekte Kosten/Produktivitätsverlust	7
4.5 Lebensqualität	8
4.6 Modellkalibrierung	g
4.7 Zusammenfassung der Inputparameter und Modellannah	nmen9
4.8 Modellanalysen	
5 Ergebnisse	
5.1 Vergleich der Modellsimulationen mit den (adjustierten) Pneumokokken-Erkrankungen	
5.2 Vergleich der Modellsimulationen mit den Serotypenvert	
Pneumokokken-Erkrankungen	
5.3 Auswirkungen der Kinderimpfung auf die Epidemiologie	
5.3.1 Invasive Pneumokokken-Erkrankungen	_
5.3.2 Hospitalisierte nichtinvasive Pneumokokken-Pneum	
5.3.3 Ambulant behandelte nichtinvasive Pneumokokken	
5.4 Effekte der Pneumokokken-Impfung von 60-Jährigen	
5.4.1 Vorbemerkung	
	21
	sen der Vakzinen21
	21
5.4.2 Darstellung der Ergebnisse	
5.4.3 Ergebnisse Szenarien I.a1-I.a5: Risikogruppen: alle,	
	NBPP nach CAPNETZ23
	V13-Kinderimpfung
	-Kinderimpfung im Januar 202424
5.4.3.3 Ergebnisse Szenario I.a3: Wechsel auf PCV15	
_	mpfung gegen Trägerschaft von Serotyp 3

5.4.3.4	Ergebnisse Szenario I.a4: Wechsel auf PCV20-Kinderimpfung im Januar 2024	27
5.4.3.5	Ergebnisse Szenario I.a5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der	
	Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall	29
5.4.4 Ergeb	nisse Szenarien I.b1-I.b5: Risikogruppen: alle, Effektivität der Erwachsenenimpfung gegen	
Serot	yp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD	31
5.4.4.1	Ergebnisse Szenario I.b1: Fortführung der PCV13-Kinderimpfung	31
5.4.4.2	Ergebnisse Szenario I.b2: Wechsel auf PCV15-Kinderimpfung im Januar 2024	32
5.4.4.3	Ergebnisse Szenario I.b3: Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme	
	einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3	34
5.4.4.4	Ergebnisse Szenario I.b4: Wechsel auf PCV20-Kinderimpfung im Januar 2024	35
5.4.4.5	Ergebnisse Szenario I.b5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der	
	Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall	37
5.4.5 Ergeb	nisse Szenario II.a1-II.a5: Risikogruppen: Nicht-Immunsupprimierte, Effektivität der	
Erwad	chsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ .	39
5.4.5.1	Ergebnisse Szenario II.a1: Fortführung der PCV13-Kinderimpfung	39
5.4.5.2	Ergebnisse Szenario II.a2: Wechsel auf PCV15-Kinderimpfung im Januar 2024	40
5.4.5.3	Ergebnisse Szenario II.a3: Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme	
	einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3	42
5.4.5.4	Ergebnisse Szenario II.a4: Wechsel auf PCV20-Kinderimpfung im Januar 2024	
5.4.5.5	Ergebnisse Szenario II.a5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der	
	Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall	45
5.4.6 Ergeb	nisse Szenario II.b1-II.b5: Risikogruppen: Nicht-Immunsupprimierte, Effektivität der	
	chsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD	47
	Ergebnisse Szenario II.b1: Fortführung der PCV13-Kinderimpfung	
	Ergebnisse Szenario II.b2: Wechsel auf PCV15-Kinderimpfung im Januar 2024	
	Ergebnisse Szenario II.b3: Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme	
	einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3	50
5.4.6.4	Ergebnisse Szenario II.b4: Wechsel auf PCV20-Kinderimpfung im Januar 2024	
	Ergebnisse Szenario II.b5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der	
	Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall	53
5.4.7 Ergeb	nisse Szenario III.a1-III.a5: Risikogruppen: keine Grunderkrankungen, Effektivität der	
Erwad	chsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ .	55
5.4.7.1	Ergebnisse Szenario III.a1: Fortführung der PCV13-Kinderimpfung	55
5.4.7.2	Ergebnisse Szenario III.a2: Wechsel auf PCV15-Kinderimpfung im Januar 2024	56
5.4.7.3	Ergebnisse Szenario III.a3: Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme	
	einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3	58
5.4.7.4	Ergebnisse Szenario III.a4: Wechsel auf PCV20-Kinderimpfung im Januar 2024	
	Ergebnisse Szenario III.a5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der	
	Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall	61
5.4.8 Ergeb	nisse Szenario III.b1-III.b5: Risikogruppen: keine Grunderkrankungen, Effektivität der	
_	chsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD	63
	Ergebnisse Szenario III.b1: Fortführung der PCV13-Kinderimpfung	
	Ergebnisse Szenario III.b2: Wechsel auf PCV15-Kinderimpfung im Januar 2024	
	Ergebnisse Szenario III.b3: Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme	
	einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3	66
5.4.8.4	Ergebnisse Szenario III.b4: Wechsel auf PCV20-Kinderimpfung im Januar 2024	
	Ergebnisse Szenario III.b5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der	-,
3	Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall	69
usammenfas	sung und Schlussfolgerungen	
iteraturverze		7 <u>1</u> 74

Abbildungsverzeichnis

Abbildung 1:	Schematische Darstellung des altersstratifizierten Modells	1
Abbildung 2:	Geschätzte jährliche Kontaktraten	2
Abbildung 3:	Case-Carrier-Ratios invasiver Pneumokokken-Erkrankungen	3
Abbildung 4:	Serotypenverteilung IPD vs NBPP (CAPNETZ) in 20+Jährigen vor Einführung der PCV-Kinderimpfung	; 4
Abbildung 5:	Letalität bei invasiven Pneumokokken-Erkrankungen	4
Abbildung 6:	Letalität bei nichtinvasiven Pneumokokken-Pneumonien	5
Abbildung 7:	Effektivität der Pneumokokken-Vakzine gegen invasive Pneumokokken-Erkrankungen (inkl.	
	Waning) bei der Impfung von 60-Jährigen	6
Abbildung 8:	Effektivität der Pneumokokken-Vakzine gegen nichtinvasive Pneumokokken-Pneumonien (inkl.	
	Waning) bei der Impfung von 60-Jährigen	6
Abbildung 9:	Direkte Krankheitskosten	7
Abbildung 10:	Indirekte Krankheitskosten bei invasiven Pneumokokken-Erkrankungen	8
Abbildung 11:	Indirekte Krankheitskosten bei nichtinvasiven Pneumokokken-Pneumonien	8
Abbildung 12:	Vergleich zwischen der simulierten IPD-Inzidenz und den adjustierten CRC-IPD-Inzidenzen für die	
	Altersgruppe <2 Jahre	13
Abbildung 13:	Vergleich zwischen der simulierten IPD-Inzidenz und den adjustierten CRC-IPD-Inzidenzen für die	
	Altersgruppe 2-4 Jahre	13
Abbildung 14:	Vergleich zwischen der simulierten IPD-Inzidenz und den adjustierten CRC-IPD-Inzidenzen für die	
	Altersgruppe 5-15 Jahre	13
Abbildung 15:	Vergleich zwischen der simulierten Serotypenverteilung bei IPD und den Daten des NRZ für die	
	Altersgruppe 60-74 Jahre	14
Abbildung 16:	Vergleich zwischen der simulierten Serotypenverteilung bei IPD und den Daten des NRZ für die	
	Altersgruppe 75 Jahre	14
Abbildung 17:	Simulierte IPD-Inzidenzen in der Altersgruppe 60-74 Jahre	16
Abbildung 18:	Simulierte IPD-Inzidenzen in der Altersgruppe 75+ Jahre	16
Abbildung 19:	Simulierte hospitalisierte NBPP-Inzidenzen in der Altersgruppe 60-74 Jahre; Serotypenverteilung	
	wie bei invasiven Pneumokokken-Erkrankungen	17
Abbildung 20:	Simulierte hospitalisierte NBPP-Inzidenzen in der Altersgruppe 60-74 Jahre; Serotypenverteilung	
	wie bei invasiven Pneumokokken-Erkrankungen	17
Abbildung 21:	Simulierte hospitalisierte NBPP-Inzidenzen in der Altersgruppe 60-74 Jahre; Serotypenverteilung	
	nach CAPNETZ	18
Abbildung 22:	Simulierte hospitalisierte NBPP-Inzidenzen in der Altersgruppe 75+ Jahre; Serotypenverteilung	
	nach CAPNETZ	18
Abbildung 23:	3 11 ,	
	Serotypenverteilung wie bei invasiven Pneumokokken-Erkrankungen	19
Abbildung 24:	Simulierte ambulant behandelte NBPP-Inzidenzen in der Altersgruppe 75+ Jahre;	
	Serotypenverteilung wie bei invasiven Pneumokokken-Erkrankungen	19
Abbildung 25:	Simulierte ambulant behandelte NBPP-Inzidenzen in der Altersgruppe 60-74 Jahre;	
	Serotypenverteilung nach CAPNETZ	20
Abbildung 26:	Simulierte ambulant behandelte NBPP-Inzidenzen in der Altersgruppe 75+ Jahre;	
	Serotypenverteilung nach CAPNET7	20

1 Hintergrund

1.1 Public Health Relevanz

Streptococcus pneumoniae (Pneumokokken) ist einer der bedeutendsten bakteriellen Infektionserreger weltweit und mit hoher Morbidität sowie Mortalität assoziiert. [1] Mit einem Anteil von ca. 30% sind Pneumokokken (Pnk) der häufigste Erreger ambulant erworbener Pneumonien. [2] Bei jährlich ca. 280.000-310.000 stationären Fällen (J12-J18) im Zeitraum 2014-2016 [3] ergeben sich demnach etwa 84.000-93.000 Hospitalisierungen durch nicht-bakteriämische Pneumokokken-Pneumonien (NBPP). Davon sind 65%-72% der Personen älter als 60 Jahre. Die Krankenhaussterblichkeit der NBPP lag in den Jahren 2014-2016 insgesamt bei 9,4% und bei Personen älter als 60 Jahre bei 12,8%. [3] Zusätzlich wurden in den Jahren 2017-2018 ca. 3.200-3.300 invasive Pnk-Erkrankungen (IPD) - Meningitis, Sepsis und Bakteriämien - in Deutschland gemeldet. [4] Es wird allerdings davon ausgegangen, dass die tatsächlichen IPD-Fallzahlen etwa 2-3,5-mal so hoch sind. [4, 5] Die 30-Tage Sterblichkeit der IPD beträgt bei Über-65-jährigen mehr als 30%. [6]

Zu den ökonomischen Auswirkungen von Pnk-Infektionen liegen in Deutschland keine robusten Schätzungen vor. In gesundheitsökonomischen Modellierungen werden für die IPD sowie NBPP-Krankenhauskosten in Höhe von ca. 8.600 Euro bzw. 3.200 Euro angesetzt. [7] Damit ergeben sich Hospitalisierungskosten von etwa 324-372 Mio. Euro pro Jahr. Es kann allerdings davon ausgegangen werden, dass die tatsächlichen gesellschaftlichen Kosten aufgrund erhöhter Komorbidität (insbesondere chronisch neurologisch und kardial), Folgeerkrankungen sowie Produktivitätsverlusten durch temporäre oder dauerhafte Arbeitsunfähigkeit und vorzeitige Todesfälle signifikant höher sind.

1.2 Notwendigkeit effektiverer Impfstrategien bei älteren Erwachsenen

Die Letalität und Morbidität von Pnk-Infektionen haben sich trotz des medizinischen Fortschritts bei älteren Personen nicht wesentlich verringert, da Risikofaktoren wie Alter, Komorbiditäten und Bettlägerigkeit prognostisch eine wichtigere Rolle spielen als der Erreger selbst. [8, 9] Somit bleiben Impfungen die effektivste Maßnahme, um die Krankheitslast von Pnk-Infektionen substantiell zu reduzieren. Diesbezüglich hat sich die Kinderimpfung mit Pneumokokken-Konjugatvakzinen (PCV) als wirksamste Strategie zur Vermeidung von Pnk-Erkrankungen in der Gesamtbevölkerung erwiesen.

Kinder unter fünf Jahren sind das Hauptreservoir von Pneumokokken und spielen daher bei der Transmission des Erregers eine entscheidende Rolle: die Prävalenz der asymptomatischen Trägerschaft beträgt in dieser Altersgruppe etwa 40%-60%. [10] Da PCVs auch gegen die Trägerschaft schützen, erzeugt der Einsatz bei Kleinkindern indirekte Herdeneffekte. Diese führten in Deutschland (und anderen Ländern) zu einer signifikanten Reduktion von Pnk-Erkrankungen in allen Altersgruppen. [11] Den maximalen Effekt hat die Kinderimpfung mit dem 13-valenten Pneumokokken-Konjugatimpfstoff (PCV13) allerdings bereits in den Jahren 2013-2015 erzielt. [4, 12] Die derzeit eingesetzten PCVs sind nur gegen einige – hinsichtlich der Krankheitslast aber bedeutsame – der bis dato über 90 identifizierten Pneumokokken-Serotypen wirksam und haben durch die Eliminierung vakziner Serotypen eine ökologische Nische geschaffen, die von anderen Serotypen besetzt wurde (Serotypen-Replacement). So wird der erneute Anstieg der IPD-Inzidenz auch maßgeblich von den Replacement-Serotypen verursacht.

In der Altersgruppe 60+ verstärken demographische Effekte und Limitationen der derzeitigen Impfstrategien bei Erwachsenen diesen Trend. Aufgrund der indirekten Herdeneffekte der Kinderimpfung mit PCV13 decken die PCV13-Serotypen in der Altersgruppe 60+ nur noch knapp über 30% aller IPD- und 7% aller nichtinvasiven Pneumonien ab. [4, 13, 14] Hiervon entfallen allerdings wiederum etwa 50%-65% aller Infektionen auf Serotyp 3 [4, 14], gegen den die Effektivität von PCV13 noch nicht abschließend geklärt ist. [15] Derzeit ist von

einer stark reduzierten Schutzwirkung auszugehen. PPSV23 weist zwar ein deutlich breiteres Serotypenspektrum auf, jedoch sind die Effektivität (insbesondere gegen NBPP) [16] und Wirkdauer limitiert [17]. Zudem ist auch bei PPSV23 von einer stark verminderten Schutzwirkung gegen Serotyp 3 auszugehen. [17, 18]

Künftig stehen eine 15-valente, eine 20-valente und voraussichtlich eine 21-valente Pneumokokken-Konjugatvakzine und ein 24-valenter Impfstoff (PCV15, PCV20, PCV21, MAPS24) zur Verfügung, die ebenfalls eine höhere Serotypenabdeckung als PCV13 aufweisen und wie die vorherigen Pneumokokken-Konjugatimpfstoffe an ein hochimmunogenes Trägerprotein gebunden sind, so dass im Vergleich zu PPSV23 eine höhere Wirksamkeit gegen Vakzine-Serotypen zu erwarten ist.

Zusammenfassend kann festgestellt werden, dass Pnk-Infektionen eine hohe Public Health Relevance haben und ein großer medizinischer Bedarf an wirkungsvolleren Impfstrategien basierend auf höhervalenten PCVs besteht. Aufgrund der komplexen Epidemiologie sind dezidierte modellbasierte Analysen unerlässlich, um die Effektivität und Effizienz der Impfstrategien mit PCV15, PCV20, PCV21 oder MAPS24 zu optimieren.

2 Untersuchungsziel und Forschungsfragen

Das übergeordnete Ziel des Projektes ist die Ableitung einer optimalen Impfstrategie zur Prävention von Pnk-Infektionen bei älteren Erwachsenen unter Berücksichtigung von PPSV23, PCV13, PCV15, PCV20, PCV21 und MAPS24. Im Fokus steht dabei die Impfung von Erwachsenen >60 Jahre ohne Immundefekte mit PPSV23, PCV15 oder PCV20 sowie die sequentiellen Impfungen PCV13+PPSV23, PCV15+PPSV23 und PCV20+PPSV23. Ergebnisse für die Impfstrategien PCV21, MAPS24 und PCV21+PPSV23 werden tabellarisch ebenfalls berichtet, spielen aber nur eine untergeordnete Rolle, da diese sich noch in der frühen Phase der klinischen Prüfung befinden.

Konkret sollen die folgenden Forschungsfragen beantwortet werden:

1. Effektivität

- Welche Impfstrategie ist bei älteren Erwachsenen unter Beibehaltung der derzeitigen Immunisierung von Kindern <2 Jahre mit PCV13 hinsichtlich der Vermeidung von Pnk-Infektionen, Hospitalisierungen und vermiedenen vorzeitigen Todesfällen am effektivsten?
- Welche Impfstrategie ist bei älteren Erwachsenen bei einer flächendeckenden Immunisierung von Kindern <2 Jahre mit PCV15 (ab Januar 2024) hinsichtlich der Vermeidung von Pnk-Infektionen, Hospitalisierungen und vermiedenen vorzeitigen Todesfällen am effektivsten?
- Welche Impfstrategie ist bei älteren Erwachsenen bei einer flächendeckenden Immunisierung von Kindern <2 Jahre mit PCV20 (ab Januar 2024) hinsichtlich der Vermeidung von Pnk-Infektionen, Hospitalisierungen und vermiedenen vorzeitigen Todesfällen am effektivsten?

2. Effizienz

- Wie hoch ist die "Number needed to vaccinate" zur Vermeidung einer Hospitalisierung bzw. eines Sterbefalls durch Pnk-Infektionen unter Beibehaltung der derzeitigen Immunisierung von Kindern <2 Jahre mit PCV13?
- Wie hoch ist die "Number needed to vaccinate" zur Vermeidung einer Hospitalisierung bzw. eines Sterbefalls durch Pnk-Infektionen bei einer flächendeckenden Immunisierung von Kindern <2 Jahre mit PCV15 (ab Januar 2024)?
- Wie hoch ist die "Number needed to vaccinate" zur Vermeidung einer Hospitalisierung bzw. eines Sterbefalls durch Pnk-Infektionen bei einer flächendeckenden Immunisierung von Kindern <2 Jahre mit PCV20 (ab Januar 2024)?

3. Kosteneffektivität

- Welche Impfstrategien sind bei älteren Erwachsenen unter Beibehaltung der derzeitigen Immunisierung von Kindern <2 Jahre mit PCV13 hinsichtlich der Vermeidung von Pnk-Infektionen kosteneffektiv?
- Welche Impfstrategie ist bei älteren Erwachsenen bei einer flächendeckenden Immunisierung von Kindern <2 Jahre mit PCV15 (ab Januar 2024) hinsichtlich der Vermeidung von Pnk-Infektionen kosteneffektiv?
- Welche Impfstrategie ist bei älteren Erwachsenen bei einer flächendeckenden Immunisierung von Kindern <2 Jahre mit PCV20 (ab Januar 2024) hinsichtlich der Vermeidung von Pnk-Infektionen kosteneffektiv?

Es wurde ein neuartiges Transmissionsmodell mit acht interagierenden Gruppen von Serotypen entwickelt. Es werden die Effekte der folgenden Vakzinen/Vakzinenkombinationen bei älteren Erwachsenen verglichen:

- PPSV23
- PCV13+PPSV23 (nach sechs Monaten)
- PCV15
- PCV15+PPSV23 (nach sechs Monaten)

- PCV20
- PCV20+PPSV23 (nach sechs Monaten)
- PCV21
- PCV21+PPSV23 (nach sechs Monaten)
- MAPS24
- MAPS24+PPSV23 (nach sechs Monaten)

Die Impfung erfolgt jeweils bei 60-Jährigen im Zeitraum **2024-2033**.

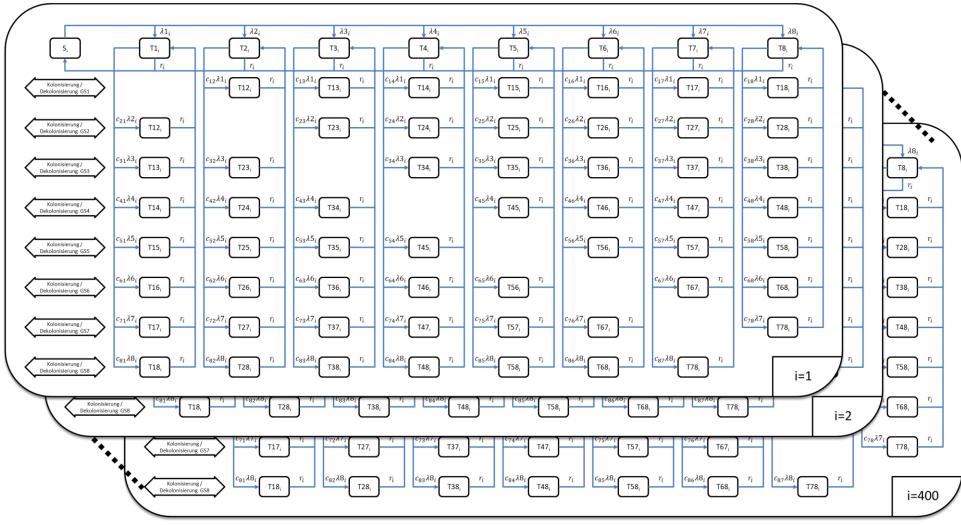
3 Methoden

3.1 Modellstruktur und methodischer Rahmen

Das dynamische Transmissionsmodell basiert auf einem System von Differentialgleichungen und umfasst acht Gruppen von Pnk-Serotypen (GS), die bei der Besiedlung des Wirtes miteinander konkurrieren:

- GS1: 4, 6B, 9V, 14, 18C, 19F, 23F (PCV7)
- GS2: 1, 5, 6A, 7F, 19A (PCV13-PCV7/Serotyp 3)
- GS3: 3
- GS4: 22F, 33F (PCV15-PCV13)
- GS5: 8, 10A, 11A, 12F, 15B (PCV20-PCV15)
- GS6: 2, 9N, 17F, 20 (PPSV23-PCV20)
- GS7: 15A, 16F, 23A, 23B, 24F, 31, 35B (PCV21-PPSV23)
- GS8: übrige Serotypen

Insgesamt umfasst das Modell 37 mögliche Trägerzustände:


- A) Keine Trägerschaft
- B) Träger einer Gruppe von Serotypen (8 Trägerzustände)
 - Träger GS1 Träger GS8
- C) Träger von zwei unterschiedlichen Gruppen von Serotypen (28 Trägerzustände)
 - Träger GS1+GS2 Träger GS7+GS8

Zudem werden drei Pnk-Erkrankungen berücksichtigt:

- Invasive Pnk-Erkrankungen (IPD: z. B., Sepsis, Meningitis)
- Hospitalisierte ambulant erworbene nichtinvasive Pnk-Pneumonien (NBPPi)
- Ambulant behandelte ambulant erworbene nichtinvasive Pnk-Pneumonien (NBPPo)

Das Differentialgleichungsmodell ist in 400 Altersklassen (0-<3 Monate, 3-<6 Monate, ..., 99,75-<100 Jahre) mit jeweils 100.000 Individuen gegliedert. Es wird jeweils für ein Vierteljahr gelöst. Anschließend wir die Bevölkerung außerhalb des Differentialgleichungsmodells um eine Altersklasse verschoben und bei Erreichung des vordefinierten Impfalters geimpft. Zudem werden 100.000 suszeptible Neugeborene in die Altersklasse 0 hinzugefügt, während 100.000 100-Jährige das Modell verlassen. Eine Sterblichkeit ist in dem Differentialgleichungsmodell nicht vorgesehen. Zur Berechnung der altersspezifischen Transmissionsrisiken werden die Träger von Pneumokokken-Serotypen entsprechend der Bevölkerungsstruktur des Jahres 2006 (Jahr, in dem die POLYMOD-Studie durchgeführt wurde) gewichtet. Als Outcome liefert das Differentialgleichungsmodell alters- und serotypenspezifische Infektionsinzidenzen / 100.000 Personen im Zeitablauf. Die künftige Bevölkerungsstruktur wird mit einem demographischen Modell (zu den Methoden siehe Bowles et al. 2012 [19]) geschätzt, um die altersspezifischen Inzidenzen in absolute Fallzahlen umzurechnen.

S_i: Suszeptible in Altersgruppe i

T1_i-T8_i: Träger einer Gruppe von Serotypen (GS) in Altersgruppe i

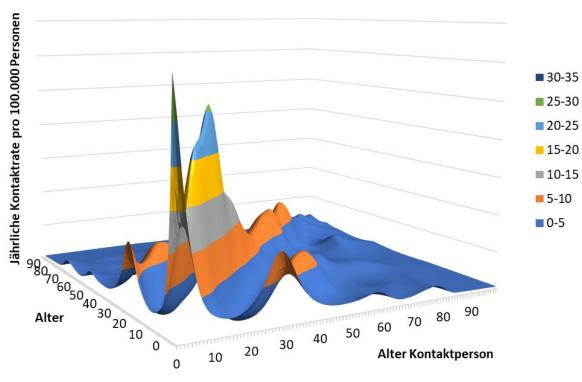
T12_i-T78_i: Träger von zwei Gruppen von Serotypen (GS) in Altersgruppe i

ለ1_i-ለ8_i: zeitabhängiger Infektionsdruck GS1-GS8 in Altersgruppe i

c₁₂-c₇₈: Wettbewerbsparameter

r_i: Dekolonisierungsrate in Altersgruppe i (1/Dauer der Trägerschaft)

4 Modellparameter


4.1 Transmission

4.1.1 Physische Kontaktrate

Die physische Kontaktrate wurde auf Basis sozialer Kontaktdaten der POLYMOD-Studie [20] geschätzt. Hierfür wurde ein bivariates Smoothing-Verfahren durchgeführt, um die mittlere Anzahl der engen Kontakte $m_{i,j}$ pro Tag zwischen Altersklassen i und j zu schätzen. Anschließend wurden unter Berücksichtigung der Reziprozität der Kontakte ($m_{i,j} \cdot n_i = m_{j,i} \cdot n_j$; n_i , n_j : Bevölkerung in Altersklasse i bzw. j) die jährlichen Kontaktraten $\kappa_{i,j}$ wie folgt kalkuliert:

$$\kappa_{i,j} = 365 \cdot \frac{m_{j,i}}{n_i}$$

Abbildung 2: Geschätzte jährliche Kontaktraten

4.1.2 Übertragungswahrscheinlichkeit pro Kontakt

Zu alters- und serotypenspezifischen Übertragungswahrscheinlichkeiten pro Kontakt gibt es keine empirischen Daten, so dass diese Parameter kalibriert werden mussten.

4.1.3 Dauer der Trägerschaft

Die Dauer der Trägerschaft wurde Högberg et al. [21] entnommen. Es wird angenommen, dass die Dauer der Trägerschaft lediglich vom Alter abhängt.

Tabelle 1: Dauer der Pneumokokken-Trägerschaft nach Högberg et al.

<1 Jahr	1-2 Jahre	3-4 Jahre	5-17 Jahre	>18 Jahre
74 Tage	47 Tage	34 Tage	26 Tage	25 Tage

4.1.4 Wettbewerbsparameter

Das Modell verfügt über 56 Wettbewerbsparameter (siehe Tabelle 4), die bei Pnk-Trägern das Risiko einer Doppelträgerschaft reduzieren. Die Wettbewerbsparameter liegen zwischen den Werten 0-1; je niedriger der Wettbewerbsparameter, desto geringer ist das Risiko einer Doppelträgerschaft. Es wurde angenommen, dass jede Gruppe von Serotypen über Schutzpotential cD und ein Kolonisierungspotential cA verfügt. Die Wettbewerbsparameter wurden dann über die folgende Formel berechnet:

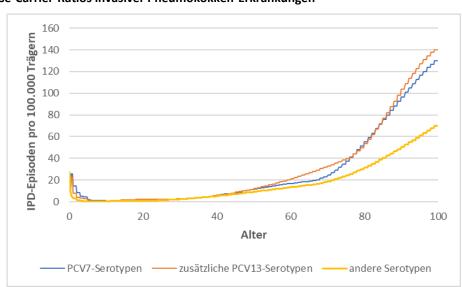
$$c_{l,k} = \frac{1}{e^{(cD_k - cA_l)}}$$

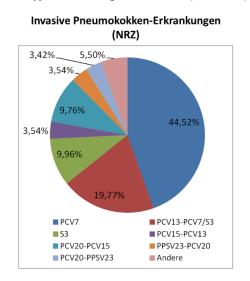
Somit mussten für die 56 Wettbewerbsparameter insgesamt 16 Parameter kalibriert werden.

4.2 Pneumokokken-Infektionen

4.2.1 Case-Carrier-Ratios invasiver Pneumokokken-Erkrankungen

Da derzeit keine deutsche Studie zur Trägerschaft von Pneumokokken existiert, ist es nicht möglich, Case-Carrier-Ratios (CCRs) basierend auf deutschen Daten zu berechnen. Brueggeman et al. [22] berichten in einer systematischen Analyse zu Pnk-Trägerstudien, dass die CCRs einzelner Pnk-Serotypen geographisch und temporär stabil sind. In der vorliegenden Studie wurden daher die für ein britisches Pneumokokken-Modell geschätzten Werte von Choi et al. [23] verwendet. In Deutschland wurde die IPD-Inzidenz bei Kindern mit der Capture-Recapture-Methode (CRC) berechnet. Als Datengrundlage dienten die beiden Surveillancesysteme ESPED und Pneumoweb. Inzidenzdaten der Altersgruppen <2 Jahre, 2-4 Jahre sowie 5-15 Jahre liegen für die Zeiträume 1997-2001 sowie 2007-2016 vor. Um die Inzidenzen für die relevanten Gruppen von Serotypen zu erhalten, wurden die Inzidenzdaten mit den korrespondierenden altersspezifischen Serotypenverteilungen verknüpft. Die Serotypisierung wurde vom Nationalen Referenzzentrum für Streptokokken (NRZ) durchgeführt, das die entsprechenden Daten zur Verfügung gestellt hat. Schätzungen zur Inzidenz bei Erwachsenen liegen nur aus einer Querschnittsstudie in Nordrhein-Westfalen [5] für den Zeitraum 2001-2003. Darüber hinaus sind lediglich Serotypenverteilungen bekannt. Die IPD-Inzidenzen wurden adjustiert, um eine Unterschätzung der Fallzahlen aufgrund der Praxis von Blutkulturentnahmen bei ambulant erworbenen Pneumonien auszugleichen. [5]



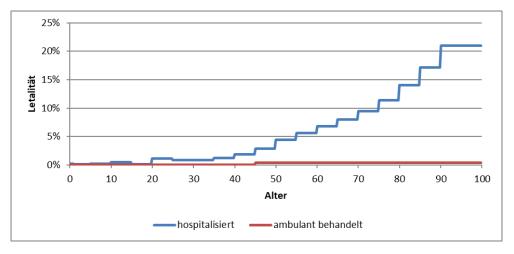

Abbildung 3: Case-Carrier-Ratios invasiver Pneumokokken-Erkrankungen

Quelle: Eigene Berechnung basierend auf Choi et al. 2012 [23].

4.2.2 Case-Carrier-Ratios nichtinvasiver ambulant erworbener Pneumokokken-Pneumonien

Die altersstratifizierten NBPPi- sowie NBPPo-Inzidenzen wurden basierend auf den Fallzahlen und Verordnungsvolumina der ICD-10-Codes J12-J18 in der Gesundheitsberichterstattung des Bundes [3] sowie IMS-Health [24] berechnet. Es wurde ein Anteil von NBPP an allen Pneumonien von 30% unterstellt. Je nach Szenario wurden für die Zeit vor Einführung der PCV-Kinderimpfung entweder eine vergleichbare Serotypenverteilung wie bei IPD (2002-2006) oder eine Serotypenverteilung basierend auf CAPNETZ-Daten 2002-2006 angenommen. Die alters- und serotypenbezogenen CCRs von nichtinvasiven Pnk-Pneumonien wurden anhand der folgenden Formel kalkuliert: CCR_{NBPP}=CCR_{IPD}·Inzidenz_{IPD}.

Abbildung 4: Serotypenverteilung IPD vs NBPP (CAPNETZ) in 20+Jährigen vor Einführung der PCV-Kinderimpfung


4.2.3 Letalität

Für die Letalität bei IPD wurden altersspezifische Daten des statistischen Bundesamtes verwendet und basierend auf den Daten von van Hoek et al. [6] und der deutschen Serotypenverteilung bei IPD (NRZ) für die acht Gruppen von Serotypen adjustiert. Für nichtinvasive Pneumokokken-Pneumonien wurden Daten vom Statistischen Bundesamt (hospitalisierte NBPP) bzw. dem CAPNETZ (ambulant behandelte NBPP) verwendet.

70% 60% 50% 40% 30% 20% 10% 0% 0 10 20 30 40 50 60 70 80 90 100 Alter PCV13-PCV7/S3 —— Serotyp 3 —— PPSV23-PCV13 —

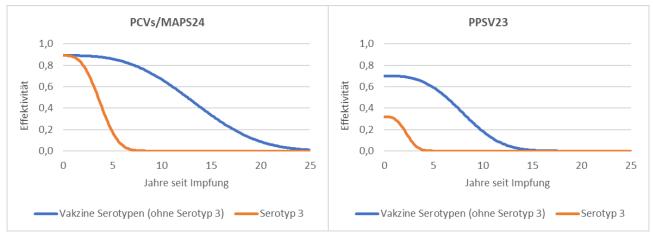
Abbildung 5: Letalität bei invasiven Pneumokokken-Erkrankungen

Abbildung 6: Letalität bei nichtinvasiven Pneumokokken-Pneumonien

4.3 Impfquoten und Wirksamkeit der Vakzinen

4.3.1 Impfquoten

Im August 2006 hat die Ständige Impfkommission am Robert-Koch-Institut die Impfung von Kleinkindern mit PCV7 nach dem Impfschema 3+1 empfohlen. Infolgedessen ist die Impfquote stark angestiegen. Im Januar 2010 wurde PCV7 durch PCV13 ersetzt. Seit 2015 wird zudem ein 2+1 Schema anstelle eines 3+1 Schemas empfohlen. Altersstratifizierte Impfquoten bei Kindern wurden quartalsweise auf Basis von Abrechnungsdaten der Kassenärztlichen Vereinigungen (KV) berechnet. Diese reichen bis Januar 2004 zurück. Als geimpft wurden Kleinkinder angesehen, die mindestens zwei PCV-Dosen erhalten haben. Bei der Erwachsenen-Impfung wurde eine Impfquote von 30% angenommen [25].


4.3.2 Wirksamkeit

Es wurde angenommen, dass die Impfungen nur gegen die Vakzine-Serotypen (VT) wirksam sind (keine Vakzine-assoziierten Serotypen). Weiterhin wurde davon ausgegangen, dass die Schutzwirkung der Impfung mit der Zeit kontinuierlich abnimmt (Waning).

Für die Kinderimpfung wurde eine fixe Waning-Rate unterstellt, die dem Kehrwert der erwarteten Schutzdauer des Impfstoffs entspricht. Sowohl die Effektivität (zum Zeitpunkt der Impfung) gegen die Trägerschaft von Vakzine-Serotypen als auch die erwartete Schutzdauer von PCV bei Kindern wurde im Rahmen der Modellkalibrierung geschätzt. Es wurde angenommen, dass die Effektivität der Kinderimpfung gegen VT-IPD zum Zeitpunkt der Impfung bei 100% liegt.

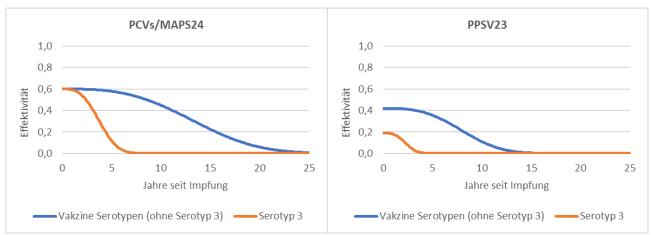

Bei der Erwachsenen-Impfung wurde eine altersabhängige Effektivität zum Zeitpunkt der Impfung sowie eine zeitabhängige Waning-Rate unterstellt. Für PCV13 wurde die altersabhängige Effektivität der Studie von van Werkhoven et al. [26] entnommen und für PPSV23 auf Basis der Studien von Andrews et al. [17] sowie Djennad et al. [18] geschätzt. Für die Waning-Rate von PCV13 wurde eine Waning-Funktion basierend auf den Ergebnissen von Savulescu et al. [27] (Waning der Effektivität der vollständigen Kinderimpfung) geschätzt und für PPSV23 wurde die Rate basierend auf den Daten von Djennad et al. [18] geschätzt (siehe Abbildungen 7 und 8). Für PCV15, PCV20, PCV21 und MAPS24 wurde angenommen, dass die Effektivität gegen Vakzine-Serotypen mit jener von PCV13 vergleichbar ist (auch für die zusätzlichen Serotypen). Dasselbe gilt für die Waning-Rate.

Abbildung 7: Effektivität der Pneumokokken-Vakzinen gegen invasive Pneumokokken-Erkrankungen (inkl. Waning) bei der Impfung von 60-Jährigen

Die Waning-Rate beruht auf eigenen Berechnungen.

Abbildung 8: Effektivität der Pneumokokken-Vakzinen gegen nichtinvasive Pneumokokken-Pneumonien (inkl. Waning) bei der Impfung von 60-Jährigen

Die Waning-Rate beruht auf eigenen Berechnungen.

Tabelle 2 zeigt die Abdeckung der unterschiedlichen Pnk-Vakzinen in den acht Gruppen von Serotypen. Sofern die Abdeckung nicht bei 100% lag, wurde die Effektivität der Vakzinen entsprechend reduziert: bspw. wurde die Effektivität von PPSV23 gegen Pnk-Infektionen durch die zusätzlichen PCV13 Serotypen (ohne Serotyp 3) um 7% reduziert, welches dem Anteil von Serotyp 6A in dieser Gruppe von Serotypen entspricht, der nicht in PPSV23 enthalten ist.

Tabelle 2: IPD-Serotypenabdeckung der Pneumokokken-Vakzinen bei 60+Jährigen in den Saisons 2017/2018-2018/2019

	Serotypen							
Vakzine	PCV7	PCV13-	Corotyn 2	PCV15-	PCV20-	PPSV23-	PCV21-	Constigo
	PCV7	PCV7/S3	Serotyp 3	PCV13	PCV15	PCV20	PPSV23	Sonstige
PPSV23	100%	93%	100%	100%	100%	100%	0%	0%
PCV15	100%	100%	100%	100%	0%	0%	0%	0%
PCV20	100%	100%	100%	100%	100%	0%	0%	0%
PCV21	0%	98%	100%	100%	100%	100%	100%	0%
MAPS24	100%	100%	100%	100%	100%	100%	0%	0%

4.4 Kosten

Die Kosten wurden entsprechend den deutschen Empfehlungen zur "Bewertung von Ressourcen im Gesundheitswesen aus der Perspektive der deutschen Sozialversicherung" [28] ermittelt und um indirekte Kosten aufgrund von Produktionsausfällen ergänzt.

4.4.1 Preise der Impfungen

Die Kosten einer Pneumokokken-Impfung setzen sich aus dem Arzneimittelpreis sowie dem Preis für die Injektionsleistung zusammen. Es wurde angenommen, dass die Versichertenpauschale bereits fällig geworden ist bzw. dass die Pneumokokken-Impfung mit anderen Impfungen zusammenfällt (z. B. Influenza-Impfung). Die Arzneimittelpreise wurden der Lauer-Taxe [29] entnommen, wobei die Apothekenabgabepreise um Pharma- und Apothekenrabatte bereinigt wurden. Damit ergab sich für PCV13 ein Preis von 61,21 Euro pro Dosis und für PPSV23 von 29,08 Euro. Für PCV15, PCV20, PCV21 und MAPS24 wurde ein um 10% höherer Preis im Vergleich zu PCV13 angenommen (67,33 Euro). Die Applikationsleistung wurde als gewichteter Durchschnitt der aktuellen Impfvereinbarungen in den Bundesländern berechnet. Dies ergab einen Wert von 7,19 Euro.

4.4.2 Direkte Krankheitskosten

Als direkte Krankheitskosten wurden die Kosten zur Behandlung einer Pnk-Infektion angesetzt. Für IPD und NBPPi wurde ein gewichteter Durchschnitt unterschiedlicher G-DRG-Pauschalen kalkuliert. Für die Behandlung eines NBPPo-Falles wurden die Versicherungspauschale eines Hausarztes und die Arzneimittelkosten einer Antibiotikatherapie berechnet.

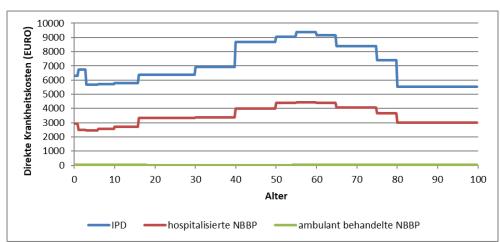


Abbildung 9: Direkte Krankheitskosten

4.4.3 Indirekte Kosten/Produktivitätsverlust

Der Produktivitätsausfall aufgrund von Pnk-Erkrankungen wurde auf Basis des Friktionskostenansatzes berechnet. Die Friktionszeit dauerte im Jahr 2016 93 Tage. Dieser Wert wurde für den Produktionsausfall eines krankheitsbedingten Sterbefalls angesetzt. Das Arbeitnehmerentgelt betrug im Jahr 2016 111 Euro pro Tag und Kopf. Die Beschäftigungsquoten für die Altersgruppen 60-64, 65-74 und 75+ lagen bei 56.0%, 15,5% sowie 0%. Durchschnittlich fielen in der Altersgruppe 60+ bei einem IPD-Fall 39,30 Arbeitsunfähigkeitstage an und bei einem NBPP-Fall 18,65 Tage.

Abbildung 10: Indirekte Krankheitskosten bei invasiven Pneumokokken-Erkrankungen

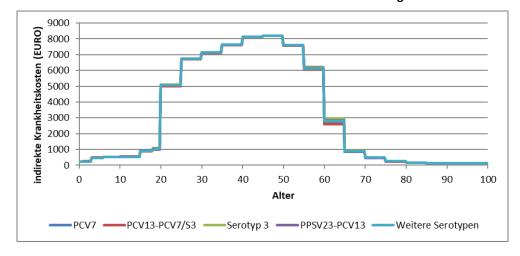
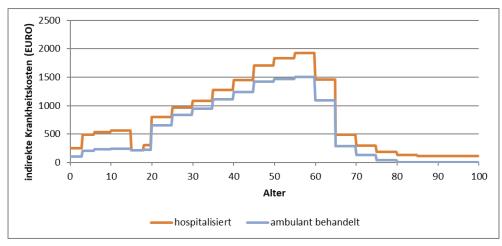



Abbildung 11: Indirekte Krankheitskosten bei nichtinvasiven Pneumokokken-Pneumonien

4.5 Lebensqualität

Die im Modell verwendeten Lebensqualitätswerte bzw. -verluste sind in Tabelle 3 dargestellt. Für IPD-Fälle wurden alters- und serotypenspezifische Werte berechnet.

Tabelle 3: Lebensqualität und Lebensqualitätsverluste bei Pneumokokken-Infektionen

Parameter	Altersgruppe	Einheit	QALY	Quelle
	<18	<u> </u>	0,879	Annahme
	18-<30	_	0,879	
	30-<40	_	0,870	
Dan Elliania a	40-<50		0,833	<u> </u>
Bevölkerung	50-<60	─ Jahr ─	0,798	EuroQol 2004
	60-<70	_	0,746	
	70-<80	_	0,755	
	80+	_	0,631	
IPD, hospitalisierte NBPP	Alle	Fall	-0,11	
Ambulant behandelte NBPP	Alle	Fall	-0,0040	Melegaro et al.[30],
Spätfolgen*	Alle	Jahr	-0,2550	Mangen et al. [31]

^{*}Wahrscheinlichkeit von Spätfolgen bei Meningitis: 31,7% {Jit et al. [32]}; QALY: qualitätsadjustierte Lebensjahre; NBPP: nichtinvasive Pneumokokken-Pneumonie

4.6 Modellkalibrierung

Im Rahmen der Modellkalibrierung wurden insgesamt 80 Parameter geschätzt: 56 Parameter zur Berechnung alters- und serotypenspezifischer Transmissionswahrscheinlichkeiten pro Sozialkontakt (sieben pro Gruppe von Serotypen), 16 Parameter zur Berechnung der Wettbewerbsparameter, sechs Parameter zu Effektivität und Waning der PCV-Kinderimpfung und zwei Parameter, die eine Persistenz von PCV13-Serotypen (mit Ausnahme Serotyp 3) auf niedrigem Niveau erzeugen. Alle Parameter wurden simultan mit einem direkten Optimierungsverfahren kalibriert. Dazu wurde die Summe der quadrierten Differenzen zwischen den logarithmierten IPD-Inzidenzen und -Serotypenverteilungen des Modells und den logarithmierten empirischen Daten minimiert. Als Optimierungsverfahren wurde der Levenberg-Marquardt-Algorithmus angewendet.

Tabelle 4: Kalibrierte Wettbewerbsparameter

		Trägerschaft							
		PCV7	PCV13-	Sero-	PCV15-	PCV20-	PPSV23-	PCV21-	Sons-
		PCV7	PCV7/S3	typ 3	PCV13	PCV15	PCV20	PPSV23	tige
a)	PCV7	n/a	0,18	0,19	0,61	0,19	0,60	0,17	0,17
kolonisierende Serotypen	PCV13-PCV7/S3	0,40	n/a	0,14	0,52	0,14	0,51	0,13	0,13
	Serotyp 3	0,55	0,21	n/a	0,66	0,23	0,65	0,21	0,21
lonisier	PCV15-PCV13	0,63	0,27	0,29	n/a	0,29	0,72	0,27	0,27
	PCV20-PCV15	0,63	0,27	0,29	0,73	n/a	0,72	0,27	0,27
	PPSV23-PCV20	0,63	0,27	0,30	0,73	0,29	n/a	0,27	0,27
Nen	PCV21-PPSV23	0,45	0,15	0,17	0,56	0,16	0,55	n/a	0,15
_	Sonstige	0,57	0,22	0,25	0,68	0,24	0,67	0,22	n/a

Die in Tabelle 4 gezeigten Werte beschreiben jeweils den partiellen Schutz durch Trägerschaft der in der Spalte angegebenen Gruppe von Serotypen gegen die in der Zeile abgetragene Gruppe von Serotypen. Nach den kalibrierten Werten würden insbesondere die zusätzlichen Serotypen in PCV13 (PCV13-PCV7), in PCV20 (PCV20-PCV15), in PCV21 (PCV21-PPSV23) sowie die Nicht-Vakzine-Serotypen (sonstige) einen vergleichsweise hohen Schutz gegen Kolonisierung durch eine andere Gruppe von Serotypen bieten.

4.7 Zusammenfassung der Inputparameter und Modellannahmen

Tabelle 5: Zusammenfassung der Inputparameter und Modellannahmen im Basisfall

Parameter	Wert	Quelle
Impfalter	60 Jahre	
Dauer des Impfprogramms	2024-2033	
Impfquote bei Senioren	30%	Rieck [25]
Effektivität von PPSV23		Für die Impfeffektivität wurden unterschiedliche Szenarien gerechnet
gegen VT-NBPP	42%	Suzuki [16]
gegen VT-IPD	70%	Andrews [17], Djennad [18]
Schutzdauer VT-PD	8,1 Jahre	Djennad [18]
gegen Serotyp 3-NBPP	19%	Suzuki [16], Annahme
gegen Serotyp 3-IPD	32%	Andrews [17], Annahme
Schutzdauer Serotyp 3-PD	2,3 Jahre	Djennad [18], Annahme
Effektivität von PCV13 / PCV2	0 / PCV21 / MAPS24	Für die Impfeffektivität wurden unterschiedliche Szenarien gerechnet
gegen VT-NBPP	60%	Van Werkhoven [26], Bonten [33]
gegen VT-IPD	89%	Van Werkhoven [26], Bonten [33]
Schutzdauer VT-PD	13,5 Jahre	Annahme basierend auf Savulescu et al. [27]

gegen Serotyp	3-NBPP	60%	Van Werkhoven [26], Bonten [33]
gegen Serotyp	3-IPD	89%	Van Werkhoven [26], Bonten [33]
Schutzdauer Se	erotyp 3-PD	3,8 Jahre	Annahme basierend auf Savulescu et al. [27]
Inzidenzen IPD		Pneumokokken-Trägerschaft u	fischen Inzidenzen sind das Ergebnis des dynamischen Transmissionsmodells zur nter Berücksichtigung der Säuglingsimpfung seit 2006. Das Modell wurde auf Basis enz und dem Serotypen-Mix kalibriert.
Inzidenzen NBPP		Pneumokokken-Trägerschaft u rung der PCV-Kinderimpfung e	fischen Inzidenzen sind das Ergebnis des dynamischen Transmissionsmodells zur Inter Berücksichtigung der Säuglingsimpfung seit 2006. Inzidenzdaten vor Einfüh- Entstammen der Gesundheitsbericht des Bundes sowie IMS-Health. Es wurde an- en 20%-30% aller NBP-Fälle verursachen.
Letalität in 60+ Jä	ährigen		
	GS1	13,4%-50,6%	
	GS2	7,8%-39,7%	
IPD	GS3	22,8%-61,4%	Alters- und serotypenspezifische Daten aus UK, angepasst an Serotypen-Mix und Altersstruktur in Deutschland.
GS4-GS6		16,9%-45,9%	Altersstruktur in Deutschland.
	GS7-GS8	15,2%-48,3%	
NBPPi		6,8%-21,0%	Altersabhängig; Gesundheitsbericht des Bundes[3]
NBPPo		0,4%	Altersabhängig; CAPNETZ.
QALY-Verlust pro	Fall (inkl. Ste	rbefälle) in 60+ Jährigen	
	GS1	1,02-3,68	
GS2		0,83-2,92	
IPD GS3	GS3	1,21-4,86	Alters- und serotypenspezifische Daten aus UK[6], angepasst an Serotypen-Mix und Altersstruktur in Deutschland.
	GS4-GS6	0,94-3,68	und Artersstruktur in Deutschland.
	GS7-GS8	0,99-3,58	
NBPPi		0,49-1,52	Altersabhängig.
NBPPo		0,01-0,09	Altersabhängig.
Direkte Krankhei	tskosten pro F	all	
IPD		5.522-9.138 €	Altersabhängig; DRG-Browser.
NBPPi		3.001-4.397 €	Altersabhängig; DRG-Browser.
NBPPo		46-51€	Altersabhängig; EBM-Katalog.
Indirekte Krankh	eitskosten pro	Fall	
	GS1	125-2.743 €	
	GS2	125-2.605 €	
IPD	GS3	125-2.974 €	AOV Chakishirahaa Duudaaanah Duudaaaanah u fiin Auhait
	GS4-GS6	125-2.829 €	AOK, Statistisches Bundesamt, Bundesagentur für Arbeit
	GS7-GS8	125-2.787 €	
NBPPi		114-1.454 €	
NBPPo		5-1.094 €	
Impfstoffpreise (pro Dosis aus	10er-Packung)	
PPSV23		29,08€	Lauer-Taxe
			Lauran Taura
PCV13		61,21€	Lauer-Taxe
	0 / PCV21 /	61,21 € 67,33 €	Annahme: 10% höher als PCV13

VT-IPD: Invasive Pneumokokken-Erkrankungen durch Vakzine-Serotypen; VT-NBPP: Nichtinvasive Pneumokokken-Pneumonien durch Vakzine-Serotypen; NBPPi: hospitalisierte nichtinvasive Pneumokokken-Pneumonie; NBPPo: ambulant behandelte nichtinvasive Pneumokokken-Pneumonie; QALY: qualitätsadjustierte Lebensjahre; VT-PD: Pneumokokken-Erkrankungen durch Vakzine-Serotypen; GS: Gruppe von Serotypen

4.8 Modellanalysen

Insgesamt wurden 30 unterschiedliche Szenarien simuliert (siehe Tabelle 6). Dabei wurde die Population/Krankheitsinzidenz, die Kinderimpfung sowie die Serotypenverteilung bei NBPP variiert.

Die Szenarien I.a3, I.b3, II.a3, II.b3, III.a3 und III.b3 (Kinderimpfung PCV15_S3+) sind Sensitivitätsanalysen der PCV15-Kinderimpfungsszenarien, in denen jeweils angenommen wird, dass die Dauer der Wirksamkeit gegen asymptomatische Trägerschaft von Serotyp 3 bei der PCV15-Kinderimpfung doppelt so lange ist wie bei der PCV13- und PCV20-Kinderimpfung (2,1 Jahre statt 1,05 Jahre). Analog ist die Erwachsenen-Impfstrategie PCV15_S3+ eine Sensitivitätsanalyse zur Erwachsenen-Impfung mit PCV15, in der angenommen wird, dass die Dauer der Wirksamkeit gegen Pnk-Infektionen (IPD, NBPP) doppelt so lange ist wie bei den anderen PCVs bzw. MAPS24 (7,6 Jahre statt 3,8 Jahre).

Die I.a5, II.b5, II.a5, III.b5, III.a5 und III.b5 sind Sensitivitätsanalysen der PCV20-Kinderimpfungsszenarien, in denen angenommen wird, dass neben der verminderten durchschnittlichen Wirkdauer zusätzlich auch noch die Wirksamkeit gegenüber Serotyp 3 reduziert ist (um 75% gegenüber dem Basisfall). Diese Szenarien stellen eine Art Worst Case Szenario für die Erwachsenen-Impfung mit PCV20 dar, da in den simulierten Szenarien mit PCV20-Kinderimpfung der Anteil von Serotyp 3 an allen durch PCV20-Serotypen verursachten Pnk-Erkrankungen auf deutlich über 75% ansteigt (siehe Kapitel 5.2). Ein weiterer Grund für die Sensitivitätsanalysen war, dass die Replacement-Effekte durch Serotyp 3 in den Szenarien mit PCV20-Kinderimpfung wahrscheinlich überschätzt wurden.

Tabelle 6: Simulierte Szenarien

Szenario	Population/Krankheitsinzidenz	Kinderimpfung (ab Januar 2024)	Effektivität gegen Serotyp 3	Serotypenvertei- lung bei NBPP
l.a1	Alle Risikogruppen	PCV13	Basisfall	CAPNETZ
I.a2	Alle Risikogruppen	PCV15	Basisfall	CAPNETZ
I.a3	Alle Risikogruppen	PCV15_S3+	Basisfall	CAPNETZ
I.a4	Alle Risikogruppen	PCV20	Basisfall	CAPNETZ
I.a5	Alle Risikogruppen	PCV20	25% vom Basisfall	CAPNETZ
I.b1	Alle Risikogruppen	PCV13	Basisfall	wie IPD
I.b2	Alle Risikogruppen	PCV15	Basisfall	wie IPD
I.b3	Alle Risikogruppen	PCV15_S3+	Basisfall	wie IPD
I.b4	Alle Risikogruppen	PCV20	Basisfall	wie IPD
I.b5	Alle Risikogruppen	PCV20	25% vom Basisfall	wie IPD
II.a1	Nicht-Immunsupprimierte	PCV13	Basisfall	CAPNETZ
II.a2	Nicht-Immunsupprimierte	PCV15	Basisfall	CAPNETZ
II.a3	Nicht-Immunsupprimierte	PCV15_S3+	Basisfall	CAPNETZ
II.a4	Nicht-Immunsupprimierte	PCV20	Basisfall	CAPNETZ
II.a5	Nicht-Immunsupprimierte	PCV20	25% vom Basisfall	CAPNETZ
II.b1	Nicht-Immunsupprimierte	PCV13	Basisfall	wie IPD
II.b2	Nicht-Immunsupprimierte	PCV15	Basisfall	wie IPD
II.b3	Nicht-Immunsupprimierte	PCV15_S3+	Basisfall	wie IPD
II.b4	Nicht-Immunsupprimierte	PCV20	Basisfall	wie IPD
II.b5	Nicht-Immunsupprimierte	PCV20	25% vom Basisfall	wie IPD
III.a1	Keine Grunderkrankungen	PCV13	Basisfall	CAPNETZ
III.a2	Keine Grunderkrankungen	PCV15	Basisfall	CAPNETZ
III.a3	Keine Grunderkrankungen	PCV15_S3+	Basisfall	CAPNETZ
III.a4	Keine Grunderkrankungen	PCV20	Basisfall	CAPNETZ
III.a5	Keine Grunderkrankungen	PCV20	25% vom Basisfall	CAPNETZ
III.b1	Keine Grunderkrankungen	PCV13	Basisfall	wie IPD
III.b2	Keine Grunderkrankungen	PCV15	Basisfall	wie IPD
III.b3	Keine Grunderkrankungen	PCV15_S3+	Basisfall	wie IPD
III.b4	Keine Grunderkrankungen	PCV20	Basisfall	wie IPD
III.b5	Keine Grunderkrankungen	PCV20	25% vom Basisfall	wie IPD

Da das Modell die mittlere Krankheitsinzidenz für die entsprechenden Altersgruppen simuliert, wurden drei unterschiedliche Inzidenzszenarien betrachtet, um die Effekte der Impfung in unterschiedlichen Risikogruppen abzuschätzen:

1. Durchschnittliche Inzidenz in allen Risikogruppen (simulierte mittlere Krankheitsinzidenz)

- 2. Inzidenz bei Personen ohne Immunsuppression
- 3. Inzidenz bei Personen ohne Grunderkrankungen

Es wurde angenommen, dass der Anteil der Personen ohne Grunderkrankungen in der Altersgruppe 60+ etwa 50% beträgt. Tabelle 7 zeigt die Inzidenz in den Subpopulationen der Nicht-Immunsupprimierten (nichtsupprimierte Personen mit und ohne Grunderkrankungen) und ohne Grunderkrankungen in Relation zu der mittleren Inzidenz über alle Risikogruppen. Hierbei handelt es sich um Annahmen basierend auf van Hoek et al. 2012 [34] und Kühne et al. 2023 [35].

Tabelle 7: Inzidenz in den Subpopulationen in Prozent der mittleren Inzidenz über alle Risikogruppen

	Nichtsupprimierte Personen mit und ohne Grunderkrankungen	Nichtsupprimierte Personen ohne Grunderkrankungen
IPD	89%	50%
Hospitalisierte NBPP	64%	30%
Ambulant behandelte NBPP	81%	47%

IPD: invasive Pneumokokken-Erkrankungen; NBPP: nichtinvasive Pneumokokken-Pneumonien

5 Ergebnisse

5.1 Vergleich der Modellsimulationen mit den (adjustierten) berichteten Daten der Surveillance für invasive Pneumokokken-Erkrankungen

Abbildungen 12-14 zeigen einen Vergleich der Simulationsergebnisse mit den (adjustierten) geschätzten IPD-Inzidenzen der Capture-Recapture (CRC)-Kalkulationen [12] bei Kindern <16 Jahre. In Abbildungen 15-16 sind die simulierten IPD-Serotypenverteilungen der Modellierung sowie die berichteten Verteilungen des Nationalen Referenzzentrums für Streptokokken für die Altersgruppen 60-74 Jahre und 75+Jahre dargestellt. Die Simulation konnte sowohl die indirekten Herdeneffekte der Kinderimpfung als auch die Replacement-Effekte erfassen.

Abbildung 12: Vergleich zwischen der simulierten IPD-Inzidenz und den adjustierten CRC-IPD-Inzidenzen für die Altersgruppe <2 Jahre

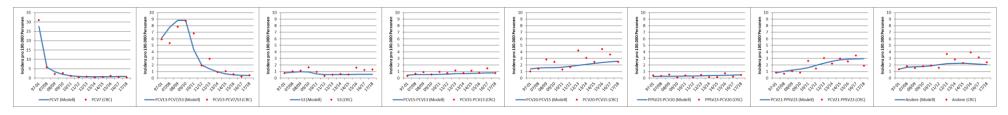


Abbildung 13: Vergleich zwischen der simulierten IPD-Inzidenz und den adjustierten CRC-IPD-Inzidenzen für die Altersgruppe 2-4 Jahre

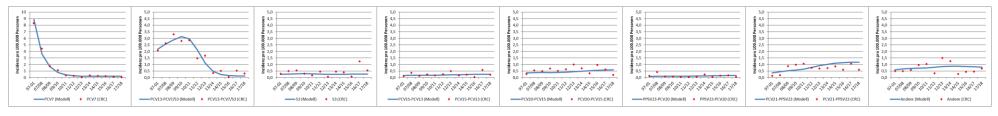


Abbildung 14: Vergleich zwischen der simulierten IPD-Inzidenz und den adjustierten CRC-IPD-Inzidenzen für die Altersgruppe 5-15 Jahre

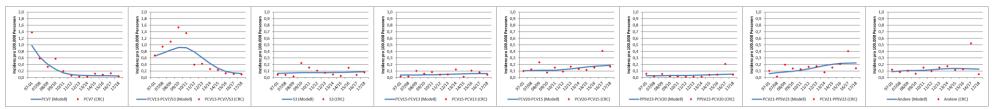
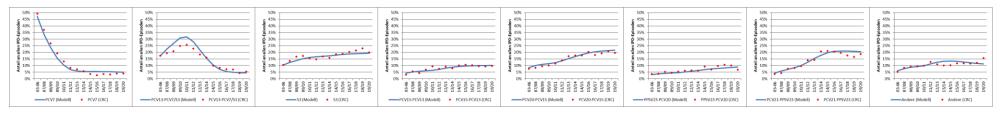



Abbildung 16: Vergleich zwischen der simulierten Serotypenverteilung bei IPD und den Daten des NRZ für die Altersgruppe 75 Jahre

5.2 Vergleich der Modellsimulationen mit den Serotypenverteilungen in der CAPNETZ-Studie für nicht-invasive Pneumokokken-Erkrankungen

Ausgangspunkt für die Simulation der NBPP-Episoden sind die alters- und serotypenspezifischen NBPP-Inzidenzen vor Einführung der PCV-Kinderimpfung, die basierend auf altersstratifizierten Fallzahlen (2002-2006) und je nach Szenario anhand der IPD-Serotypenverteilung (2002-2006) oder der NBPP-Serotypenverteilung in der CAPNETZ-Studie (2002-2006) geschätzt wurden (siehe Kapitel 4.2.2).

Tabelle 8 zeigt den Anteil der NBPP bezogen auf alle nichtinvasiven Pneumonien für unterschiedliche Gruppen von Serotypen in der CAPNETZ-Studie 2013-2019 [13] im Vergleich zu den simulierten Werten. Dabei zeigt sich insbesondere eine gute Übereinstimmung der CAPNETZ-Daten mit den Simulationsergebnissen basierend auf einer Ausgangsverteilung der Serotypen bei NBPP, die vergleichbar zu der Verteilung bei IPD (2002-2006) ist.

Tabelle 8: Anteil nicht-bakteriämischer Pneumokokken-Pneumonien bezogen auf alle nicht-bakteriämischen Pneumonien nach unterschiedlichen Gruppen von Serotypen

			Periode	
		2013-2014	2015-2017	2018-2019
	CAPNETZ-Studie 2013-2019 [13]	7,3% [4,8%-11,2%]	8,6% [5,8%-12,5%]	7,2% [4,7%-11,0%]
PCV13-Serotypen	Modell: Serotypenverteilung wie IPD (2002-2006)	7,7%	6,3%	6,8%
	Modell: Serotypenverteilung CAPNETZ-Studie (2002-2006)	10,2%	9,7%	10,9%
	CAPNETZ-Studie 2013-2019 [13]	10,8% [7,6%-15,2%]	9,3% [6,4%-13,4%]	8,0% [5,3%-11,9%]
PCV15-Serotypen	Modell: Serotypenverteilung wie IPD (2002-2006)	9,2%	8,1%	9,0%
	Modell: Serotypenverteilung CAPNETZ-Studie (2002-2006)	11,4%	11,1%	12,7%
	CAPNETZ-Studie 2013-2019 [13]	14,3% [10,5%-19,1%]	10,8% [7,6%-15,1%]	12,6% [9,0%-17,0%]
PCV20-Serotypen	Modell: Serotypenverteilung wie IPD (2002-2006)	12,2%	12,1%	14,0%
	Modell: Serotypenverteilung CAPNETZ-Studie (2002-2006)	13,9%	14,5%	16,9%
DDCV/22 Coretumen	CAPNETZ-Studie 2013-2019 [13]	14,3% [10,5%-19,1%]	12,7% [9,2%-17,1%]	15,0% [11,0%-19,6%]
PPSV23-Serotypen	Modell: Serotypenverteilung wie IPD (2002-2006)	13,3%	13,5%	15,8%
+ Serotyp 6A	Modell: Serotypenverteilung CAPNETZ-Studie (2002-2006)	14,8%	15,6%	18,4%

Die 95%-Konfidenzintervalle für die CAPNETZ-Studie 2013-2019 (in eckigen Klammern) basieren auf eigenen Berechnungen.

5.3 Auswirkungen der Kinderimpfung auf die Epidemiologie von Pneumokokken-Erkrankungen bei Erwachsenen

5.3.1 Invasive Pneumokokken-Erkrankungen

Nach den Simulationsergebnissen würde sich zur Saison 2019/2020 ein neuer Gleichgewichtszustand bei der Serotypenverteilung von invasiven Pnk-Erkrankungen ergeben. Aufgrund von demografischen Effekten würde es allerdings bei Fortführung der PCV13-Kinderimpfung zu einem leichten Anstieg der Gesamtinzidenz bei älteren Erwachsenen ≥60 Jahre in den Folgejahren kommen.

Eine Umstellung der Kinderimpfung von PCV13 auf PCV15 im Januar 2024 würde nach den Simulationsergebnissen innerhalb von wenigen Jahren zu einer starken Reduktion von IPD durch die zusätzlichen PCV15-Serotypen (PCV15-PCV13) bei älteren Erwachsenen durch indirekte Herdeneffekte führen. Zudem würden Replacement-Effekte durch Nicht-PCV15-Serotypen sowie Serotyp 3 entstehen. Da die Inzidenz, Trägerprävalenz und auch der geschätzte partielle Schutz gegen Kolonisierung durch andere Serotypen (siehe Tabelle 4) der PCV15-PCV13-Serotypen vergleichsweise gering ist, würden auch die indirekten Effekte der Kinderimpfung nach den Simulationsergebnissen moderat ausfallen. Unter der Annahme, dass die Effektivität von PCV15 gegen die Trägerschaft von Serotyp 3 langsamer nachlässt (Szenario PCV15(S3+)-Kinderimpfung) als im Basisszenario (PCV15-Kinderimpfung) bzw. als bei PCV13 würden sich auch substantielle indirekte Herdeneffekte bei

Serotyp 3 ergeben. Diese würden zwar nicht zu einer Eliminierung von invasiven Pnk-Erkrankungen durch Serotyp 3 führen, jedoch zu einer deutlichen Reduktion der Krankheitslast in der Altersgruppe 60+Jahre.

Eine Umstellung der Kinderimpfung von PCV13 auf PCV20 im Januar 2024 würde nach den Simulationsergebnissen innerhalb weniger Jahre zu einer starken Reduktion von IPD durch die zusätzlichen PCV20-Serotypen (sowohl PCV15-PCV13- als auch PCV20-PCV15-Serotypen) bei älteren Erwachsenen durch indirekte Herdeneffekte führen. Zudem würden Replacement-Effekte durch nicht PCV20-Serotypen sowie Serotyp 3 entstehen. Da der geschätzte partielle Schutz der PCV20-PCV15-Serotypen gegen Kolonisierung durch andere Serotypen vergleichsweise hoch ist (siehe Tabelle 4), entstanden in den Modellsimulationen ausgeprägte Replacement-Effekte: einerseits durch Nicht-PCV20-Serotypen aber insbesondere auch durch Serotyp 3.

Abbildung 17: Simulierte IPD-Inzidenzen in der Altersgruppe 60-74 Jahre

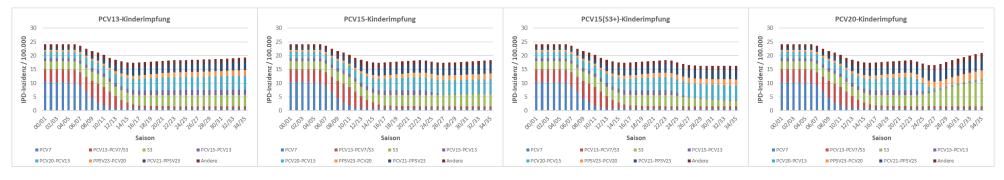
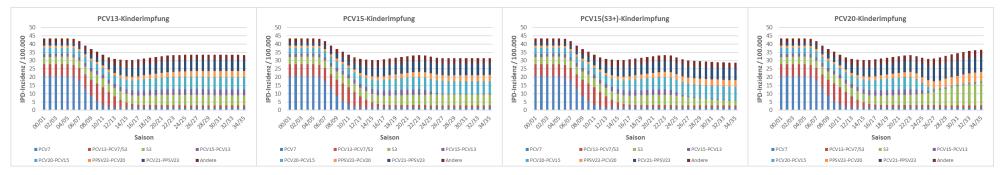



Abbildung 18: Simulierte IPD-Inzidenzen in der Altersgruppe 75+ Jahre

5.3.2 Hospitalisierte nichtinvasive Pneumokokken-Pneumonien

Unter der Annahme, dass die Serotypenverteilung vor Einführung der PCV-Kinderimpfung bei nichtinvasiven Pnk-Pneumonien vergleichbar zur Verteilung bei invasiven Pnk-Erkrankungen ist, würden sich ähnliche Dynamiken in der Verteilung der Serotypen ergeben. Da die Inzidenz von hospitalisierten NPBB bei älteren Erwachsenen mit dem Alter stärker ansteigt als bei IPD, wäre der Anstieg der Gesamtinzidenz in den kommenden Jahren aufgrund von demografischen Effekten ausgeprägter als bei invasiven Pnk-Erkrankungen. Wird die Serotypenverteilung des CAPNETZ zugrunde gelegt (höherer Anteil von Serotyp 3 und geringer Anteil der übrigen PCV13-Serotypen), dann würden die indirekten Nettoeffekte durch die PCV13- oder PCV15-Kinderimpfung in den Modellsimulationen aufgrund der Persistenz von Serotyp 3 geringer ausfallen. Im Kinderimpfungsszenario PCV15(S3+) würde die Gesamtinzidenz allerdings nahezu das Niveau erreichen wie unter der Annahme einer vergleichbaren Serotypenverteilung wie bei IPD, jedoch weiterhin mit einer höheren Krankheitslast durch Serotyp 3. Im PCV20-Kinderimpfungs-Szenario würde sich nach den Modellsimulationen ein extremer Anstieg der Krankheitslast durch Serotyp 3 aufgrund von Replacement-Effekten ergeben.

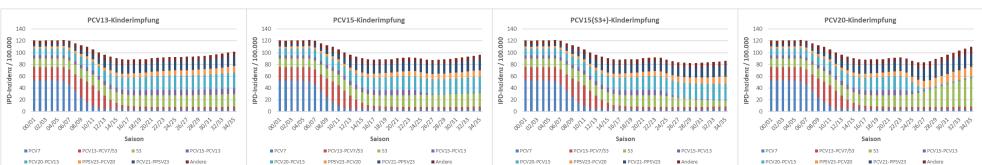
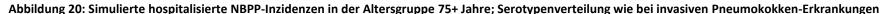
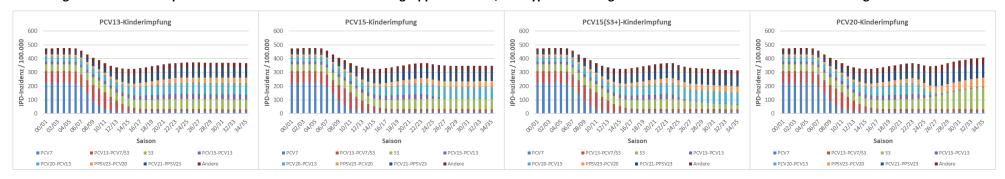
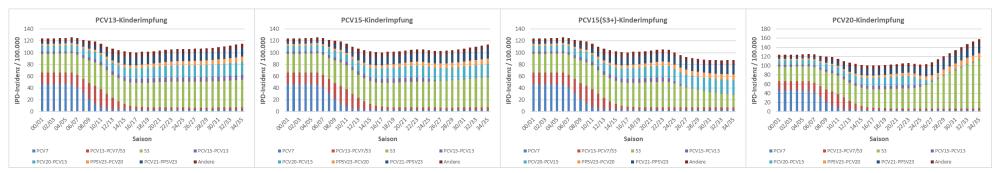





Abbildung 19: Simulierte hospitalisierte NBPP-Inzidenzen in der Altersgruppe 60-74 Jahre; Serotypenverteilung wie bei invasiven Pneumokokken-Erkrankungen

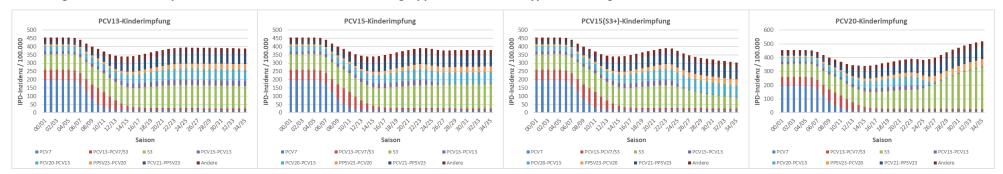


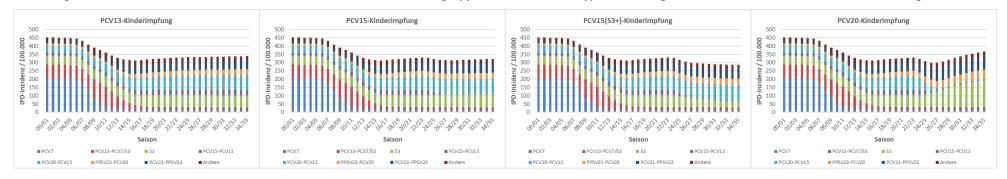
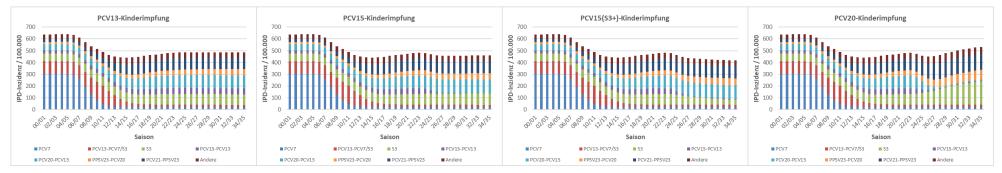
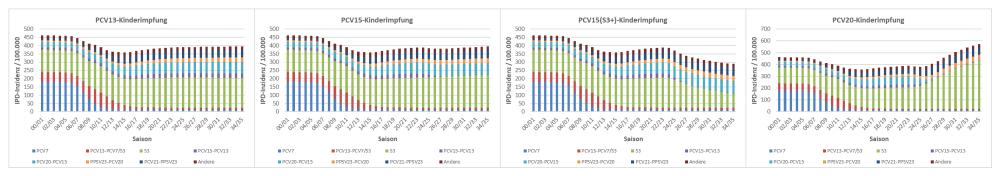
Abbildung 21: Simulierte hospitalisierte NBPP-Inzidenzen in der Altersgruppe 60-74 Jahre; Serotypenverteilung nach CAPNETZ

Abbildung 22: Simulierte hospitalisierte NBPP-Inzidenzen in der Altersgruppe 75+ Jahre; Serotypenverteilung nach CAPNETZ

5.3.3 Ambulant behandelte nichtinvasive Pneumokokken-Pneumonien

Bei ambulant behandelten nichtinvasiven Pnk-Pneumonien ergaben sich in den Modellsimulationen ähnliche Serotypendynamiken wie bei hospitalisierten NBPP, da von einer identischen Serotypenverteilung vor Einführung der PCV-Kinderimpfung wie bei hospitalisierten nichtinvasiven Pnk-Pneumonien ausgegangen wurde.

Abbildung 23: Simulierte ambulant behandelte NBPP-Inzidenzen in der Altersgruppe 60-74 Jahre; Serotypenverteilung wie bei invasiven Pneumokokken-Erkrankungen

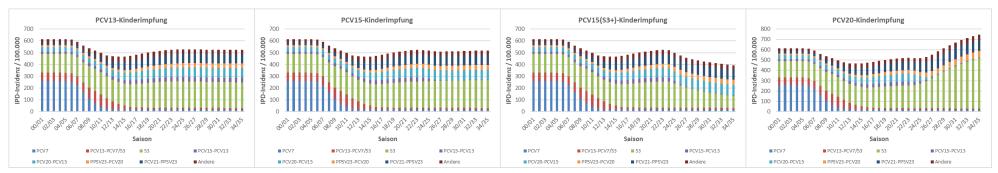

Abbildung 24: Simulierte ambulant behandelte NBPP-Inzidenzen in der Altersgruppe 75+ Jahre; Serotypenverteilung wie bei invasiven Pneumokokken-Erkrankungen

Abbildung 25: Simulierte ambulant behandelte NBPP-Inzidenzen in der Altersgruppe 60-74 Jahre; Serotypenverteilung nach CAPNETZ

Abbildung 26: Simulierte ambulant behandelte NBPP-Inzidenzen in der Altersgruppe 75+ Jahre; Serotypenverteilung nach CAPNETZ

5.4 Effekte der Pneumokokken-Impfung von 60-Jährigen

5.4.1 Vorbemerkung

5.4.1.1 Fokus der Ergebnisanalysen

Der Fokus der Analysen liegt auf dem Vergleich von PPSV23, PCV15 und PCV20 sowie den entsprechenden sequentiellen Impfungen PCV13+PPSV23, PCV15+PPSV23, PCV20+PPSV23. Ergebnisse für die Impfstrategien PCV13, PCV21+PPSV23, MAPS24 werden in den Ergebnistabellen ebenfalls dargestellt, aber in den folgenden Kapiteln nicht detaillierter erläutert. Ein kurzer Ausblick auf die Ergebnisse für PCV21 und MAPS24 wird in den Schlussfolgerungen (Kapitel 6) gegeben.

5.4.1.2 Zentrale Annahmen zur Effektivität und Preisen der Vakzinen

Bisher liegen lediglich Studien zur Immunogenität von PCV15 und PCV20 vor, die zeigen, dass die höhervalenten Vakzinen PCV13 nicht unterlegen sind und dass eine Immunantwort gegen die zusätzlichen Serotypen erzeugt wird. Inwiefern sich diese Ergebnisse auf die Vermeidung von Pnk-Erkrankungen übertragen lassen, ist derzeit nicht bekannt, da entsprechende Studien zu diesen Outcomes noch nicht durchgeführt wurden. Es wurde dennoch eine vergleichbare Effektivität von PCV13, PCV15, PCV20, PCV21 sowie MAPS24 gegen Vakzine-Serotypen angenommen, d.h. auch die Effektivität gegen die zusätzlichen Serotypen der höhervalenten Vakzinen ist vergleichbar zur Effektivität gegen die PCV13-Serotypen (mit Ausnahme von Serotyp 3 gegen den alle Vakzinen weniger effektiv sind).

Ferner wurde angenommen, dass die Preise von PCV15, PCV20, PCV21 sowie MAPS24 jeweils 10% höher sind als jener von PCV13. In den Ergebnistabellen werden die Kosten der Impfung von den Krankheitskosten getrennt berichtet, so dass die Möglichkeit besteht, einfache Sensitivitätsanalysen zu Vakzinenpreisen auf Basis der berichteten Ergebnisse durchzuführen.

Die in den folgenden Kapiteln dargestellten Ergebnisse basieren auf diesen zentralen Annahmen und müssen dementsprechend interpretiert werden.

5.4.1.3 Indirekte Effekte der Kinderimpfung

Das Modell wurde in erster Linie entwickelt, um den Einfluss der Kinderimpfung mit PCV13 auf die künftige Epidemiologie von Pnk-Infektionen bei (älteren) Erwachsenen zu projizieren. Hierzu wurde das Modell anhand deutscher IPD-Daten entsprechend kalibriert. Ob und in welchem Ausmaß indirekte Effekte (indirekte Herdeneffekte, Replacement-Effekte) durch die PCV15- und PCV20-Kinderimpfung erzeugt werden, kann derzeit nur schwer abgeschätzt werden. Analog zur Effektivität gegen Pnk-Erkrankungen wurde für die Kinderimpfung ebenfalls angenommen, dass die Effektivität von PCV15 und PCV20 gegen die (asymptomatische) Trägerschaft von Vakzine-Serotypen vergleichbar zu PCV13 ist. Insbesondere bei der Kinderimpfung mit PCV20 sind die Replacement-Effekte wahrscheinlich deutlich überschätzt, da der partielle Schutz durch die zusätzlichen PCV20/Nicht-PCV15-Serotypen im Rahmen der Modellkalibrierung ggf. überschätzt wurde und empirische Studien darauf hindeuten, dass die Invasivität der PCV20/Nicht-PCV15-Serotypen höher ist, als im Modell angenommen. Die Modellannahmen basieren auf dem UK-Modell

von Choi 2012 [23], in dem die Invasivität (IPD Case-Carrier-Ratios) lediglich für Nicht-PCV13-Serotypen zusammen geschätzt wurde. Folglich könnte die Prävalenz der asymptomatischen Trägerschaft von PCV20/Nicht-PCV15-Serotypen in den Simulationen deutlich überschätzt worden sein. Eine höhere Trägerprävalenz bietet in dem entwickelten Modell ein größeres Potential für Replacement-Effekte. Daher sind die Ergebnisse zu den PCV15- und insbesondere PCV20-Kinderimpfszenarien mit Vorsicht zu betrachten.

Aufgrund der dargestellten Limitationen sollten die in Kapitel 5.2 dargestellten Ergebnisse auf keinen Fall dazu verwendet werden, um eine vergleichende Bewertung der PCV13, PCV15- und PCV20-Kinderimpfung vorzunehmen.

5.4.2 Darstellung der Ergebnisse

In den Ergebnistabellen werden die epidemiologischen Ergebnisse der Impfstrategien PPSV23, PCV13, PCV15 (PCV15_S3+), PCV20, PCV21, MAPS24 jeweils im Vergleich zu keiner Impfung dargestellt. Die Ergebnisse der sequentiellen Impfung werden jeweils im Vergleich zu der in der sequentiellen Impfung enthaltenen Vakzine dargestellt, durch die in den Modellsimulationen mehr Sterbefälle aufgrund von Pnk-Infektionen im Vergleich zu keiner Impfung verhindert werden konnten.

Die ökonomischen Ergebnisse der Impfstrategien PPSV23, PCV13, PCV15 (PCV15_S3+), PCV20, PCV21, MAPS24 werden in den Ergebnistabellen ebenfalls jeweils im Vergleich zu keiner Impfung dargestellt. Die Ergebnisse der sequentiellen Impfung werden jeweils im Vergleich zu der in der sequentiellen Impfung enthaltenen Vakzine dargestellt, durch die in den Modellsimulationen mehr QALYs im Vergleich zu keiner Impfung verhindert werden konnten, es sei denn, diese Vakzine wird im Vergleich zur entsprechenden sequentiellen Impfung und PPSV23 erweitert dominiert. Eine erweiterte Dominanz liegt dann vor, wenn das inkrementelle Kosteneffektivitäts-Verhältnis (ICER) des Konjugatimpfstoffs im Vergleich zu PPSV23 höher ist, als das ICER der entsprechenden sequentiellen Impfung im Vergleich zum Konjugatimpfstoff. In den Begleittexten zu den Ergebnistabellen wird stattdessen immer das ICER der sequentiellen Impfung im Vergleich zum inkludierten Konjugatimpfstoff berichtet.

Alle Ergebniswerte wurden auf ganze Zahlen gerundet. Dadurch kann es zu einer Abweichung von +/- 1 zwischen den im Text berichteten Differenzen und den in den Tabellen dargestellten Werten kommen.

<u>Beispiel:</u> In Szenario I.a1 könnten nach den Modellsimulationen durch die alleinige Impfung mit PPSV23 773,47 (gerundet 773, siehe Tabelle 9) und durch die alleinige Impfung mit PCV20 2.085,87 (gerundet 2.086, siehe Tabelle 9) Sterbefälle vermieden werden. Die Differenz der gerundeten Zahlen ergibt einen Wert von 1.313 während die tatsächliche Differenz bei 1.312,40 (gerundet 1.312) liegt.

5.4.3 Ergebnisse Szenarien I.a1-I.a5: Risikogruppen: alle, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ

5.4.3.1 Ergebnisse Szenario I.a1: Fortführung der PCV13-Kinderimpfung

Epidemiologie

In Szenario I.a1 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.988 IPD-Fälle, 8.556 Hospitalisierungen durch NBPP sowie 1.312 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 1.261 IPD-Fälle, 4.989 Hospitalisierungen durch NBPP sowie 806 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 2.138 IPD-Fälle, 6.224 Hospitalisierungen durch NBPP sowie 1.043 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 816 IPD-Fälle, 3.392 Hospitalisierungen durch NBPP sowie 544 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 1.656 IPD-Fälle, 3.131 Hospitalisierungen durch NBPP sowie 624 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 334 IPD-Fälle, 298 Hospitalisierungen durch NBPP sowie 125 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 363 IPD-Fälle, 783 Hospitalisierungen durch NBPP sowie 138 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 3.261 und zur Vermeidung eines krankheitsbedingten Sterbefalls 27.091 betragen. Die NNVs von PCV20 würden bei 219 pro vermiedene Hospitalisierung und bei 1.797 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 (auch wenn PCV15 effektiver gegen Serotyp 3 ist) sowie PCV15+PPSV23 (nur wenn PCV15 nicht substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Das ICER von PCV20 (im Vergleich zu keiner Impfung) ist geringer als jenes von PPSV23 (im Vergleich zu keiner Impfung), d.h. PPSV23 wird erweitert dominiert, da PCV20 sowohl effektiver ist als auch effizienter bezogen auf die zusätzlichen Kosten pro gewonnenem QALY. Ist PCV15 effektiver gegen Serotyp 3 als PCV20 (doppelte Dauer der Wirksamkeit), dann könnten mit der sequentiellen Impfung PCV15+PPSV23 gegenüber PCV20 688 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 163.308 Euro pro gewonnenem QALY betragen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 64.847 Euro pro gewonnenem QALY belaufen.

Tabelle 9: Ergebnisse Szenario I.a1Fortführung der PCV13-Kinderimpfung, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: alle

Szenario I.a1	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	2.026	1.097	727	1.876	1.322	2.357	1.322	4.014	363	5.816	138	4.869
Vermiedene stationäre NBPP-Fälle	4.565	4.581	3.567	6.896	2.832	9.990	2.832	13.121	783	18.852	310	15.676
Vermiedene ambulante NBPP-Fälle	20.618	21.946	16.105	29.301	11.801	44.051	11.801	49.662	3.231	66.838	1.535	57.725
Vermiedene Sterbefälle	773	654	506	1.042	499	1.462	499	2.086	138	3.034	53	2.515
Gewonnene Lebensjahre	15.620	12.607	9.205	18.977	9.755	26.773	9.755	36.409	2.678	51.615	1.031	43.410
Gewonnenen QALYs	14.930	11.719	8.534	17.619	9.455	24.829	9.455	33.773	2.874	48.736	959	41.110
NNV zur Vermeidung einer Hospitalisierung	569	660	870	427	900	304	900	219	3.261	152	8.332	182
NNV zur Vermeidung eines Sterbefalls	4.847	5.732	7.384	3.596	7.489	2.564	7.489	1.797	27.091	1.236	70.658	1.491
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	38.349.953	30.125.720	22.036.754	46.553.954	32.358.500	64.232.694	42.770.410	91.303.986	6.643.774	130.694.528	2.602.551	109.384.691
Vermiedene indirekte Krankheitskosten (€)	25.916.361	27.174.213	18.421.143	33.409.976	21.236.083	43.881.441	31.099.225	51.500.794	3.674.482	65.358.264	1.702.941	58.221.513
Zusätzliche gesellschaftliche Kosten (€)	71.701.400	199.115.607	215.542.660	199.397.802	225.352.167	171.247.597	205.077.114	136.556.953	125.234.475	83.308.940	131.247.239	111.755.528
Gewonnenen QALYs diskontiert mit 3%	8.948	6.988	4.957	10.258	6.878	14.402	9.806	19.282	1.683	27.507	566	23.332
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	68.362.012	179.447.236	191.592.446	183.416.547	202.890.734	162.652.126	186.964.822	138.159.194	109.135.327	100.756.112	113.700.684	120.591.337
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	7.640	25.678	38.651	17.880	29.496	11.294	19.067	7.165	64.847	3.663	200.840	5.169

5.4.3.2 Ergebnisse Szenario I.a2: Wechsel auf PCV15-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario I.a2 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.604 IPD-Fälle, 7.217 Hospitalisierungen durch NBPP sowie 1.088 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 864 IPD-Fälle, 3.561 Hospitalisierungen durch NBPP sowie 572 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 2.158 IPD-Fälle, 6.276 Hospitalisierungen durch NBPP sowie 1.052 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 819 IPD-Fälle, 3.408 Hospitalisierungen durch NBPP sowie 547 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 1.636 IPD-Fälle, 2.922 Hospitalisierungen durch NBPP sowie 597 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 298 IPD-Fälle, 55 Hospitalisierungen durch NBPP sowie 92 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 369 IPD-Fälle, 795 Hospitalisierungen durch NBPP sowie 140 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder

NBPP) 3.213 und zur Vermeidung eines krankheitsbedingten Sterbefalls 26.695 betragen. Die NNVs von PCV20 würden bei 257 pro vermiedene Hospitalisierung und bei 2.126 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 (auch wenn PCV15 effektiver gegen Serotyp 3 ist) sowie PCV15+PPSV23 (nur wenn PCV15 nicht substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Das ICER von PCV20 (im Vergleich zu keiner Impfung) ist geringer als jenes von PPSV23 (im Vergleich zu keiner Impfung), d.h. PPSV23 wird erweitert dominiert, da PCV20 sowohl effektiver als auch effizienter bezogen auf die zusätzlichen Kosten pro gewonnenem QALY ist. Ist PCV15 effektiver gegen Serotyp 3 als PCV20 (doppelte Dauer der Wirksamkeit), dann könnten mit der sequentiellen Impfung PCV15+PPSV23 gegenüber PCV20 1.008 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 109.879 Euro pro gewonnenem QALY betragen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 63.798 Euro pro gewonnenem QALY belaufen.

Tabelle 10: Ergebnisse Szenario I.a2

Wechsel auf PCV15-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: alle

Szenario I.a2	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.758	1.122	740	1.204	1.339	1.725	1.339	3.362	369	5.276	139	4.228
Vermiedene stationäre NBPP-Fälle	4.010	4.720	3.656	4.950	2.868	8.304	2.868	11.226	795	17.332	312	13.811
Vermiedene ambulante NBPP-Fälle	18.310	22.749	16.728	23.550	11.952	39.514	11.952	44.110	3.280	62.405	1.541	52.276
Vermiedene Sterbefälle	675	672	517	711	505	1.166	505	1.763	140	2.772	53	2.197
Gewonnene Lebensjahre	13.676	13.002	9.480	13.675	9.878	22.119	9.878	31.267	2.719	47.444	1.035	38.354
Gewonnenen QALYs	13.127	12.086	8.792	12.711	9.575	20.520	9.575	29.014	2.917	44.886	963	36.441
NNV zur Vermeidung einer Hospitalisierung	650	642	850	609	889	374	889	257	3.213	166	8.299	208
NNV zur Vermeidung eines Sterbefalls	5.556	5.576	7.234	5.272	7.397	3.216	7.397	2.126	26.695	1.352	70.379	1.707
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	33.533.851	30.989.884	22.590.647	32.690.693	23.615.453	51.845.650	50.037.241	77.841.474	6.743.481	119.751.851	2.612.972	96.139.142
Vermiedene indirekte Krankheitskosten (€)	23.195.404	28.277.560	19.445.439	29.098.479	19.835.178	40.362.526	31.707.547	47.407.887	3.733.197	62.116.321	1.709.969	54.228.953
Zusätzliche gesellschaftliche Kosten (€)	79.238.459	197.148.096	213.964.472	217.572.561	235.496.119	187.153.556	197.201.961	154.112.370	125.076.053	97.493.560	131.229.791	128.993.637
Gewonnenen QALYs diskontiert mit 3%	7.887	7.207	5.120	7.573	5.327	12.051	11.022	16.684	1.709	25.404	568	20.786
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	74.164.102	177.900.784	190.280.878	196.070.322	209.352.521	173.682.623	182.126.314	150.335.426	109.012.219	110.602.717	113.687.083	132.531.657
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	9.403	24.685	37.168	25.892	39.302	14.412	16.524	9.011	63.798	4.354	200.012	6.376

5.4.3.3 Ergebnisse Szenario I.a3: Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3

Epidemiologie

In Szenario I.a3 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.519 IPD-Fälle, 6.218 Hospitalisierungen durch NBPP sowie 980 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 918 IPD-Fälle, 3.799 Hospitalisierungen durch NBPP sowie 610 krankheitsbedingte Sterbefälle. Sollte die Erwachsenen-Impfung mit PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 2.051 IPD-Fälle, 5.191 Hospitalisierungen durch NBPP sowie 918 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 640 IPD-Fälle, 2.163 Hospitalisierungen durch NBPP sowie 385 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 394 IPD-Fälle, 851 Hospitalisierungen durch NBPP sowie 150 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 3.002 und zur Vermeidung eines krankheitsbedingten Sterbefalls 24.923 betragen. Die NNVs von PCV20 würden bei 270 pro vermiedene Hospitalisierung und bei 2.216 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23, d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 7.139 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 12.538 Euro pro gewonnenem QALY betragen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 59.627 Euro pro gewonnenem QALY belaufen.

Tabelle 11: Ergebnisse Szenario I.a3

Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: alle

Szenario I.a3	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.793	945	600	n/a	n/a	1.261	1.411	3.312	394	5.323	140	4.254
Vermiedene stationäre NBPP-Fälle	4.348	3.661	2.420	n/a	n/a	5.376	3.028	10.566	851	16.988	315	13.397
Vermiedene ambulante NBPP-Fälle	20.108	16.354	9.174	n/a	n/a	24.341	12.587	38.885	3.500	58.075	1.555	47.734
Vermiedene Sterbefälle	711	534	370	n/a	n/a	773	534	1.691	150	2.754	54	2.167
Gewonnene Lebensjahre	14.412	9.942	6.221	n/a	n/a	14.388	10.411	29.253	2.905	46.240	1.044	36.966
Gewonnenen QALYs	13.845	9.240	5.752	n/a	n/a	13.355	10.097	27.135	3.116	43.828	971	35.212
NNV zur Vermeidung einer Hospitalisierung	610	814	1.238	n/a	n/a	565	842	270	3.002	168	8.224	212
NNV zur Vermeidung eines Sterbefalls	5.272	7.023	10.097	n/a	n/a	4.847	7.005	2.216	24.923	1.361	69.730	1.730
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	n/a	n/a	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	35.376.229	24.436.712	15.534.994	n/a	n/a	34.666.714	25.081.889	74.022.475	7.209.176	118.057.459	2.636.674	93.968.834
Vermiedene indirekte Krankheitskosten (€)	25.319.460	19.333.806	9.025.754	n/a	n/a	25.546.725	14.802.949	39.294.337	3.948.126	54.608.306	1.724.113	46.550.506
Zusätzliche gesellschaftliche Kosten (€)	75.272.025	212.645.023	231.439.810	n/a	n/a	219.148.294	239.061.911	166.044.920	124.395.429	106.695.967	131.191.944	138.842.392
Gewonnenen QALYs diskontiert mit 3%	8.331	5.478	3.243	n/a	n/a	7.885	5.489	15.471	1.820	24.624	573	19.912
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	70.858.507	190.334.903	204.564.497	n/a	n/a	198.025.926	213.167.112	160.370.943	108.518.829	118.818.125	113.658.631	141.201.432
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	8.505	34.743	63.082	n/a	n/a	25.115	38.836	10.366	59.627	4.825	198.203	7.091

5.4.3.4 Ergebnisse Szenario I.a4: Wechsel auf PCV20-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario I.a4 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 582 IPD-Fälle, 4.324 Hospitalisierungen durch NBPP sowie 567 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 233 IPD-Fälle, 632 Hospitalisierungen durch NBPP sowie 106 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 368 IPD-Fälle, 601 Hospitalisierungen durch NBPP sowie 113 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 414 IPD-Fälle, 757 Hospitalisierungen durch NBPP sowie 139 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 535 IPD-Fälle, 1.157 Hospitalisierungen durch NBPP sowie 204 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 772 IPD-Fälle, 5.863 Hospitalisierungen durch NBPP sowie 776 krankheitsbedingte Sterbefälle vermieden werden. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 884 IPD-Fälle, 6.095 Hospitalisierungen durch NBPP sowie 817 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 5.487 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 15.645 Euro pro gewonnenem QALY liegen würde. Durch die sequentielle Impfung PCV20+PPSV23 könnten im Vergleich zu PCV13+PPSV23 784 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 20.501 Euro pro gewonnenem QALY betragen. PCV20+PPSV23 würde die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 2.464 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 42.827 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentiellen Impfungen PCV13+PPSV23 sowie PCV20+PPSV23. Durch die sequentielle Impfung PCV15+PPSV23 könnten gegenüber PCV15 noch einmal 2.949 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 34.843 Euro pro gewonnenem QALY betragen.

Tabelle 12: Ergebnisse Szenario I.a4
Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: alle

Szenario I.a4	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.128	1.392	686	1.477	647	2.482	647	1.710	535	4.394	142	2.973
Vermiedene stationäre NBPP-Fälle	2.832	6.287	1.470	6.524	1.388	13.019	1.388	7.156	1.157	15.675	318	10.935
Vermiedene ambulante NBPP-Fälle	13.738	32.049	6.127	32.881	5.773	63.510	5.773	35.188	4.752	60.990	1.574	47.070
Vermiedene Sterbefälle	457	879	259	918	245	1.800	245	1.024	204	2.433	54	1.658
Gewonnene Lebensjahre	9.428	17.501	5.067	18.198	4.777	34.473	4.777	20.101	3.944	42.736	1.056	30.432
Gewonnenen QALYs	9.343	16.270	5.276	16.917	5.006	31.967	5.006	18.686	4.229	40.942	983	29.508
NNV zur Vermeidung einer Hospitalisierung	947	488	1.734	469	1.836	242	1.836	423	2.209	187	8.132	270
NNV zur Vermeidung eines Sterbefalls	8.198	4.267	14.430	4.082	15.274	2.083	15.274	3.660	18.333	1.541	69.000	2.261
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	135.552.732	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	22.803.876	40.742.401	12.532.944	42.498.974	11.824.910	79.479.507	11.824.910	47.264.004	9.792.163	105.894.168	2.667.752	73.970.039
Vermiedene indirekte Krankheitskosten (€)	17.830.128	41.185.152	7.142.183	42.050.310	6.684.928	62.905.702	6.684.928	44.597.621	5.324.886	65.350.586	1.751.327	54.329.230
Zusätzliche gesellschaftliche Kosten (€)	95.333.710	174.487.986	115.877.605	194.812.448	117.042.894	136.976.524	117.042.894	187.500.107	120.435.682	108.116.978	131.133.653	151.062.463
Gewonnenen QALYs diskontiert mit 3%	5.645	9.696	3.115	10.076	2.949	18.615	2.949	11.132	2.464	23.354	581	17.085
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	86.592.777	160.107.007	101.782.961	178.189.427	102.736.268	136.176.403	102.736.268	172.432.046	105.536.503	116.737.294	113.609.851	146.767.727
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	15.339	16.512	32.670	17.684	34.843	7.315	34.843	15.490	42.827	4.999	195.666	8.591

5.4.3.5 Ergebnisse Szenario I.a5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall

Epidemiologie

In Szenario I.a5 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 157 IPD-Fälle, 1.518 Hospitalisierungen durch NBPP sowie 210 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 233 IPD-Fälle, 632 Hospitalisierungen durch NBPP sowie 106 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 368 IPD-Fälle, 601 Hospitalisierungen durch NBPP sowie 113 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 414 IPD-Fälle, 757 Hospitalisierungen durch NBPP sowie 139 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 535 IPD-Fälle, 1.157 Hospitalisierungen durch NBPP sowie 204 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 18 IPD-Fälle, 992 Hospitalisierungen durch NBPP sowie 115 krankheitsbedingte Sterbefälle vermieden werden. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 130 IPD-Fälle, 1.224 Hospitalisierungen durch NBPP sowie 155 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 1.027 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 115.189 Euro pro gewonnenem QALY liegen würde. Die sequentielle Impfung PCV20+PPSV23 würde einen geringeren ICER (im Vergleich zu keiner Impfung) aufweisen als PCV13+PPSV23 d.h. PCV13+PPSV23 würde erweitert dominiert, da PCV20+PPSV23 sowohl effektiver als auch effizienter bezogen auf die zusätzlichen Kosten pro gewonnenem QALY ist. Zudem würde PCV20+PPSV23 die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 2.464 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 42.827 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentiellen Impfungen PCV13+PPSV23 sowie PCV20+PPSV23. Durch die sequentielle Impfung PCV15+PPSV23 könnten gegenüber PCV15 noch einmal 2.949 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 34.843 Euro pro gewonnenem QALY betragen.

Tabelle 13: Ergebnisse Szenario I.a5
Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall Serotypenverteilung bei NBPP nach

CAPNETZ, Risikogruppen: alle

Szenario I.a5	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.021	860	686	945	647	1.196	647	1.178	535	3.862	142	2.441
Vermiedene stationäre NBPP-Fälle	2.497	3.146	1.470	3.384	1.388	5.007	1.388	4.015	1.157	12.535	318	7.795
Vermiedene ambulante NBPP-Fälle	11.640	13.165	6.127	13.997	5.773	21.654	5.773	16.304	4.752	42.107	1.574	28.187
Vermiedene Sterbefälle	402	466	259	506	245	726	245	611	204	2.020	54	1.245
Gewonnene Lebensjahre	8.160	8.410	5.067	9.106	4.777	13.175	4.777	11.010	3.944	33.645	1.056	21.340
Gewonnenen QALYs	8.169	7.814	5.276	8.461	5.006	12.223	5.006	10.230	4.229	32.486	983	21.052
NNV zur Vermeidung einer Hospitalisierung	1.066	936	1.734	866	1.836	604	1.836	722	2.209	229	8.132	366
NNV zur Vermeidung eines Sterbefalls	9.335	8.049	14.430	7.416	15.274	5.164	15.274	6.133	18.333	1.856	69.000	3.010
Ökonomisch: Ergebnisse im Vergleich zu	keine Imp- fung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	20.257.440	21.249.082	13.524.586	23.005.655	14.573.124	32.250.788	23.818.257	27.770.685	17.305.408	86.400.849	2.667.752	54.476.720
Vermiedene indirekte Krankheitskosten (€)	14.730.874	14.848.713	7.260.023	15.713.871	7.667.925	20.927.719	12.881.773	18.261.182	8.855.195	39.014.147	1.751.327	27.992.791
Zusätzliche gesellschaftliche Kosten (€)	100.979.400	220.317.745	235.215.949	240.642.206	256.705.701	226.183.225	242.246.720	233.329.865	252.786.147	153.946.736	131.133.653	196.892.221
Gewonnenen QALYs diskontiert mit 3%	4.915	4.507	2.707	4.887	2.920	7.022	5.055	5.942	3.492	18.164	581	11.895
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	91.284.837	197.293.719	207.791.843	215.376.139	226.827.569	204.872.883	216.324.313	209.618.757	223.870.424	153.924.006	113.609.851	183.954.439
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	18.573	43.777	76.753	44.073	77.671	29.178	42.793	35.276	64.118	8.474	195.666	15.465

5.4.4 Ergebnisse Szenarien I.b1-I.b5: Risikogruppen: alle, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD

5.4.4.1 Ergebnisse Szenario I.b1: Fortführung der PCV13-Kinderimpfung

Epidemiologie

In Szenario I.b1 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.988 IPD-Fälle, 8.738 Hospitalisierungen durch NBPP sowie 1.349 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 1.261 IPD-Fälle, 6.026 Hospitalisierungen durch NBPP sowie 920 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 2.138 IPD-Fälle, 7.474 Hospitalisierungen durch NBPP sowie 1.176 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 816 IPD-Fälle, 4.099 Hospitalisierungen durch NBPP sowie 622 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 1.656 IPD-Fälle, 6.092 Hospitalisierungen durch NBPP sowie 924 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 334 IPD-Fälle, 2.717 Hospitalisierungen durch NBPP sowie 371 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 363 IPD-Fälle, 934 Hospitalisierungen durch NBPP sowie 153 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 2.882 und zur Vermeidung eines krankheitsbedingten Sterbefalls 24.426 betragen. Die NNVs von PCV20 würden bei 211 pro vermiedene Hospitalisierung und bei 1.726 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23 (auch wenn PCV15 substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 9.946 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde bei 7.771 Euro pro gewonnenem QALY liegen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 58.649 Euro pro gewonnenem QALY belaufen.

Tabelle 14: Ergebnisse Szenario I.b1
Fortführung der PCV13-Kinderimpfung, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: alle

Szenario I.b1	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	2.026	1.097	727	1.876	1.322	2.357	1.322	4.014	363	5.816	138	4.869
Vermiedene stationäre NBPP-Fälle	5.048	3.530	2.712	6.312	3.375	7.694	3.375	13.786	934	20.352	346	16.859
Vermiedene ambulante NBPP-Fälle	23.608	14.530	9.748	23.957	15.036	29.927	15.036	50.040	4.116	71.394	1.726	60.374
Vermiedene Sterbefälle	823	559	429	997	553	1.248	553	2.172	153	3.212	56	2.656
Gewonnene Lebensjahre	16.532	10.280	7.279	17.442	10.802	22.111	10.802	37.019	2.967	53.659	1.098	44.892
Gewonnenen QALYs	15.783	9.528	6.720	16.167	10.436	20.450	10.436	34.326	3.144	50.627	1.022	42.477
NNV zur Vermeidung einer Hospitalisierung	530	810	1.087	458	796	373	796	211	2.882	143	7.717	173
NNV zur Vermeidung eines Sterbefalls	4.553	6.710	8.713	3.761	6.755	3.004	6.755	1.726	24.426	1.167	66.332	1.411
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	40.499.211	25.068.605	17.887.166	43.494.826	29.588.104	53.654.824	39.748.102	93.614.833	7.319.044	136.578.917	2.763.270	113.902.380
Vermiedene indirekte Krankheitskosten (€)	28.057.291	16.434.095	9.127.934	23.995.723	12.553.974	28.723.367	17.281.618	45.938.747	4.441.803	62.242.770	1.879.486	54.087.377
Zusätzliche gesellschaftliche Kosten (€)	67.411.211	214.912.840	228.985.458	211.871.183	236.804.672	196.983.541	221.917.030	139.808.152	123.791.885	80.540.046	130.909.975	111.371.976
Gewonnenen QALYs diskontiert mit 3%	9.436	5.570	3.777	9.247	5.959	11.702	8.414	19.382	1.842	28.337	604	23.878
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	65.209.001	192.803.927	202.964.910	194.403.883	212.923.454	183.440.363	201.959.934	142.495.159	108.026.104	100.841.900	113.437.571	122.350.200
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	6.911	34.612	53.738	21.024	35.734	15.676	24.004	7.352	58.649	3.559	187.848	5.124

5.4.4.2 Ergebnisse Szenario I.b2: Wechsel auf PCV15-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario I.b2 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.604 IPD-Fälle, 7.039 Hospitalisierungen durch NBPP sowie 1.087 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 864 IPD-Fälle, 4.303 Hospitalisierungen durch NBPP sowie 653 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 2.158 IPD-Fälle, 7.636 Hospitalisierungen durch NBPP sowie 1.185 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 819 IPD-Fälle, 4.119 Hospitalisierungen durch NBPP sowie 625 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 1.636 IPD-Fälle, 6.038 Hospitalisierungen durch NBPP sowie 913 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 298 IPD-Fälle, 2.621 Hospitalisierungen durch NBPP sowie 353 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 369 IPD-Fälle, 947 Hospitalisierungen durch NBPP sowie 155 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder

NBPP) 2.840 und zur Vermeidung eines krankheitsbedingten Sterbefalls 24.070 betragen. Die NNVs von PCV20 würden bei 254 pro vermiedene Hospitalisierung und bei 2.084 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23 (auch wenn PCV15 substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 8.108 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde bei 10.536 Euro pro gewonnenem QALY liegen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 57.692 Euro pro gewonnenem QALY belaufen.

Tabelle 15: Ergebnisse Szenario I.b2

Wechsel auf PCV15-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: alle

Szenario I.b2	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.758	1.122	740	1.204	785	1.725	1.339	3.362	369	5.276	139	4.228
Vermiedene stationäre NBPP-Fälle	4.372	3.598	2.736	3.874	2.919	5.373	3.417	11.410	947	18.394	348	14.517
Vermiedene ambulante NBPP-Fälle	20.552	14.873	9.980	15.901	10.578	22.362	15.228	42.237	4.178	64.932	1.733	52.704
Vermiedene Sterbefälle	712	570	433	614	462	886	560	1.799	155	2.905	57	2.288
Gewonnene Lebensjahre	14.349	10.530	7.425	11.284	7.874	16.341	10.939	31.040	3.012	48.725	1.103	39.009
Gewonnenen QALYs	13.756	9.758	6.856	10.459	7.272	15.097	10.569	28.784	3.192	46.064	1.026	37.035
NNV zur Vermeidung einer Hospitalisierung	612	794	1.075	738	1.009	528	786	254	2.840	158	7.687	200
NNV zur Vermeidung eines Sterbefalls	5.262	6.572	8.626	6.106	8.097	4.231	6.673	2.084	24.070	1.291	66.070	1.638
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	35.133.979	25.606.463	18.141.142	27.504.234	19.296.810	38.511.004	30.303.581	78.069.439	7.428.717	123.737.433	2.774.333	98.599.012
Vermiedene indirekte Krankheitskosten (€)	24.624.158	16.941.732	9.684.493	17.939.022	10.159.797	23.025.376	15.246.150	40.147.428	4.512.797	57.423.397	1.887.241	48.417.787
Zusätzliche gesellschaftliche Kosten (€)	76.209.577	213.867.346	228.174.923	233.918.476	249.490.142	217.825.352	233.397.019	161.144.865	123.611.217	98.200.902	130.891.157	132.344.933
Gewonnenen QALYs diskontiert mit 3%	8.242	5.707	3.868	6.116	4.102	8.770	6.756	16.349	1.870	25.836	606	20.903
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	71.991.678	191.985.897	202.247.176	209.867.651	221.159.440	198.042.839	209.334.628	157.410.858	107.885.656	113.215.995	113.422.898	136.995.384
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	8.735	33.642	52.288	34.313	53.915	22.582	278.946.750	9.628	57.692	4.382	187.072	6.554

5.4.4.3 Ergebnisse Szenario I.b3: Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3

Epidemiologie

In Szenario I.b3 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.519 IPD-Fälle, 6.781 Hospitalisierungen durch NBPP sowie 1.050 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 918 IPD-Fälle, 4.591 Hospitalisierungen durch NBPP sowie 698 krankheitsbedingte Sterbefälle. Sollte die Erwachsenen-Impfung mit PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 2.051 IPD-Fälle, 7.352 Hospitalisierungen durch NBPP sowie 1.140 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 640 IPD-Fälle, 4.314 Hospitalisierungen durch NBPP sowie 639 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 394 IPD-Fälle, 1.015 Hospitalisierungen durch NBPP sowie 166 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 2.653 und zur Vermeidung eines krankheitsbedingten Sterbefalls 22.468 betragen. Die NNVs von PCV20 würden bei 254 pro vermiedene Hospitalisierung und bei 2.091 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23, d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 7.332 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 12.427 Euro pro gewonnenem QALY betragen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 53.875 Euro pro gewonnenem QALY belaufen.

Tabelle 16: Ergebnisse Szenario I.b3

Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: alle

Szenario I.b3	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.823	817	500	n/a	n/a	1.029	673	3.248	418	5.304	140	4.237
Vermiedene stationäre NBPP-Fälle	4.547	2.785	2.083	n/a	n/a	3.432	2.635	11.280	1.075	18.786	352	14.843
Vermiedene ambulante NBPP-Fälle	21.218	10.568	6.478	n/a	n/a	13.218	8.683	40.234	4.728	64.621	1.755	52.172
Vermiedene Sterbefälle	738	428	320	n/a	n/a	539	415	1.764	176	2.952	57	2.325
Gewonnene Lebensjahre	14.762	7.361	4.904	n/a	n/a	9.375	6.603	29.622	3.411	48.620	1.117	38.733
Gewonnenen QALYs	14.196	6.831	4.528	n/a	n/a	8.688	6.091	27.481	3.614	46.098	1.039	36.911
NNV zur Vermeidung einer Hospitalisierung	588	1.041	1.447	n/a	n/a	840	1.130	258	2.505	156	7.591	196
NNV zur Vermeidung eines Sterbefalls	5.081	8.761	11.665	n/a	n/a	6.961	8.997	2.125	21.222	1.270	65.242	1.612
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	n/a	n/a	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	36.442.132	19.053.892	12.902.797	n/a	n/a	23.692.935	16.775.686	76.027.812	8.416.889	125.098.749	2.809.239	99.521.138
Vermiedene indirekte Krankheitskosten (€)	24.990.070	10.168.489	4.105.982	n/a	n/a	12.519.154	5.913.528	35.195.294	5.080.667	53.709.510	1.910.316	44.533.146
Zusätzliche gesellschaftliche Kosten (€)	74.535.512	227.193.159	238.991.778	n/a	n/a	243.149.643	256.257.536	168.138.625	122.055.176	100.553.473	130.833.176	135.307.448
Gewonnenen QALYs diskontiert mit 3%	8.477	3.892	2.423	n/a	n/a	4.975	3.324	15.428	2.114	25.641	614	20.621
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	70.878.179	202.948.876	211.143.981	n/a	n/a	217.757.574	227.023.285	163.897.387	106.712.668	116.486.089	113.378.313	140.697.393
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	8.361	52.142	87.155	n/a	n/a	43.772	68.308	10.623	50.475	4.543	184.690	6.823

5.4.4.4 Ergebnisse Szenario I.b4: Wechsel auf PCV20-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario I.b4 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 582 IPD-Fälle, 2.574 Hospitalisierungen durch NBPP sowie 405 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 233 IPD-Fälle, 754 Hospitalisierungen durch NBPP sowie 119 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 368 IPD-Fälle, 713 Hospitalisierungen durch NBPP sowie 124 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 414 IPD-Fälle, 900 Hospitalisierungen durch NBPP sowie 153 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 535 IPD-Fälle, 1.380 Hospitalisierungen durch NBPP sowie 226 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 772 IPD-Fälle, 2.147 Hospitalisierungen durch NBPP sowie 409 krankheitsbedingte Sterbefälle vermieden werden. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 884 IPD-Fälle, 2.422 Hospitalisierungen durch NBPP sowie 454 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 3.283 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 32.271 Euro pro gewonnenem QALY liegen würde. Durch die sequentielle Impfung PCV20+PPSV23 könnten im Vergleich zu PCV13+PPSV23 885 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 17.470 Euro pro gewonnenem QALY betragen. PCV20+PPSV23 würde die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 2.698 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 38.524 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentiellen Impfungen PCV13+PPSV23 sowie PCV20+PPSV23. Durch die sequentielle Impfung PCV15+PPSV23 könnten gegenüber PCV15 noch einmal 3.233 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 31.157 Euro pro gewonnenem QALY betragen.

Tabelle 17: Ergebnisse Szenario I.b4

Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: alle

Szenario I.b4	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.128	1.392	686	1.477	647	2.482	647	1.710	535	4.394	142	2.973
Vermiedene stationäre NBPP-Fälle	2.792	4.329	1.751	4.613	1.655	7.514	1.655	5.367	1.380	15.136	355	9.912
Vermiedene ambulante NBPP-Fälle	13.372	18.651	7.807	19.717	7.356	32.120	7.356	22.674	6.051	54.634	1.770	37.901
Vermiedene Sterbefälle	455	697	287	742	271	1.269	271	860	226	2.406	58	1.576
Gewonnene Lebensjahre	9.279	13.287	5.611	14.067	5.291	23.809	5.291	16.195	4.370	40.971	1.126	27.815
Gewonnenen QALYs	9.201	12.305	5.786	13.029	5.487	21.964	5.487	15.008	4.629	39.263	1.048	27.034
NNV zur Vermeidung einer Hospitalisierung	956	655	1.534	616	1.624	375	1.624	530	1.951	192	7.531	291
NNV zur Vermeidung eines Sterbefalls	8.233	5.378	13.017	5.054	13.777	2.954	13.777	4.357	16.526	1.558	64.774	2.379
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	22.559.187	31.436.570	22.674.358	33.395.622	23.856.373	54.628.360	13.019.938	38.697.940	10.791.151	102.677.647	2.832.482	68.671.751
Vermiedene indirekte Krankheitskosten (€)	16.467.216	22.741.090	14.910.256	23.792.222	15.407.788	33.219.319	8.082.782	26.888.112	6.435.804	51.242.463	1.932.898	38.685.026
Zusätzliche gesellschaftliche Kosten (€)	96.941.311	202.237.881	218.415.944	222.173.888	239.682.589	191.514.054	114.450.012	213.775.680	118.325.777	125.441.622	130.787.351	172.004.956
Gewonnenen QALYs diskontiert mit 3%	5.539	7.218	5.096	7.643	5.337	12.700	3.233	8.822	2.698	22.133	619	15.433
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	88.075.499	182.854.819	194.414.999	200.636.260	213.285.601	178.398.171	100.724.840	194.021.158	103.925.316	132.026.293	113.339.477	164.597.773
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	15.900	25.334	38.151	26.251	39.966	14.047	31.157	21.992	38.524	5.965	182.993	10.665

5.4.4.5 Ergebnisse Szenario I.b5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall

Epidemiologie

In Szenario I.b5 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 157 IPD-Fälle, 1.297 Hospitalisierungen durch NBPP sowie 193 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 233 IPD-Fälle, 754 Hospitalisierungen durch NBPP sowie 119 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 368 IPD-Fälle, 713 Hospitalisierungen durch NBPP sowie 124 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 414 IPD-Fälle, 900 Hospitalisierungen durch NBPP sowie 153 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 535 IPD-Fälle, 1.380 Hospitalisierungen durch NBPP sowie 226 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 18 IPD-Fälle sowie 13 krankheitsbedingte Sterbefälle vermieden werden, jedoch würde die Anzahl der Hospitalisierungen durch NBPP um 29 steigen. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 130 IPD-Fälle, 246 Hospitalisierungen durch NBPP sowie 58 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 669 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 182.481 Euro pro gewonnenem QALY liegen würde. Die sequentielle Impfung PCV20+PPSV23 würde einen geringeren ICER (im Vergleich zu keiner Impfung) aufweisen als PCV13+PPSV23 d.h. PCV13+PPSV23 würde erweitert dominiert, da PCV20+PPSV23 sowohl effektiver als auch effizienter bezogen auf die zusätzlichen Kosten pro gewonnenem QALY ist. Zudem würde PCV20+PPSV23 die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 2.698 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 38.524 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentiellen Impfungen PCV13+PPSV23 sowie PCV20+PPSV23. Zudem würde die sequentielle Impfung PCV15+PPSV23 die Impfung mit PCV15 erweitert dominieren. Gegenüber PPSV23 könnten durch PCV15+PPSV23 noch einmal 3.987 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 56.152 Euro pro gewonnenem QALY betragen.

Tabelle 18: Ergebnisse Szenario I.b5

Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: alle

Szenario I.b5	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.021	860	686	945	647	1.196	647	1.178	535	3.862	142	2.441
Vermiedene stationäre NBPP-Fälle	2.639	2.897	1.751	3.181	1.655	3.907	1.655	3.936	1.380	13.705	355	8.481
Vermiedene ambulante NBPP-Fälle	12.543	11.162	7.807	12.228	7.356	15.329	7.356	15.185	6.051	47.146	1.770	30.413
Vermiedene Sterbefälle	417	447	287	492	271	624	271	611	226	2.156	58	1.326
Gewonnene Lebensjahre	8.409	7.784	5.611	8.564	5.291	11.000	5.291	10.692	4.370	35.468	1.126	22.312
Gewonnenen QALYs	8.401	7.223	5.786	7.947	5.487	10.181	5.487	9.926	4.629	34.181	1.048	21.952
NNV zur Vermeidung einer Hospitalisierung	1.024	998	1.534	909	1.624	735	1.624	733	1.951	213	7.531	343
NNV zur Vermeidung eines Sterbefalls	8.987	8.382	13.017	7.621	13.777	6.010	13.777	6.140	16.526	1.739	64.774	2.827
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	20.867.647	19.962.945	12.892.274	21.921.998	14.074.289	27.230.182	19.382.473	27.224.316	17.147.819	91.204.023	2.832.483	57.198.126
Vermiedene indirekte Krankheitskosten (€)	15.019.717	11.096.064	4.712.730	12.147.197	5.210.262	14.503.971	7.567.036	15.243.087	6.659.174	39.597.438	1.932.898	27.040.000
Zusätzliche gesellschaftliche Kosten (€)	100.080.351	225.356.531	238.395.554	245.292.538	259.662.199	237.627.579	251.997.241	236.894.330	255.139.756	148.560.272	130.787.351	195.123.606
Gewonnenen QALYs diskontiert mit 3%	5.043	4.108	2.482	4.533	2.723	5.797	3.987	5.712	3.367	19.023	619	12.323
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	90.684.209	201.610.013	210.561.483	219.391.454	229.432.085	213.831.931	223.872.563	212.776.352	226.017.459	150.781.487	113.339.477	183.352.967
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	17.981	49.078	84.835	48.397	84.267	36.885	56.152	37.248	67.132	7.926	182.993	14.878

5.4.5 Ergebnisse Szenario II.a1-II.a5: Risikogruppen: Nicht-Immunsupprimierte, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ

5.4.5.1 Ergebnisse Szenario II.a1: Fortführung der PCV13-Kinderimpfung

Epidemiologie

In Szenario II.a1 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.761 IPD-Fälle, 5.516 Hospitalisierungen durch NBPP sowie 971 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 1.117 IPD-Fälle, 3.216 Hospitalisierungen durch NBPP sowie 596 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 1.894 IPD-Fälle, 4.013 Hospitalisierungen durch NBPP sowie 788 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 723 IPD-Fälle, 2.187 Hospitalisierungen durch NBPP sowie 401 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 1.467 IPD-Fälle, 2.019 Hospitalisierungen durch NBPP sowie 479 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 296 IPD-Fälle, 192 Hospitalisierungen durch NBPP sowie 92 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 322 IPD-Fälle, 505 Hospitalisierungen durch NBPP sowie 107 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 4.521 und zur Vermeidung eines krankheitsbedingten Sterbefalls 34.968 betragen. Die NNVs von PCV20 würden bei 312 pro vermiedene Hospitalisierung und bei 2.390 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 (auch wenn PCV15 effektiver gegen Serotyp 3 ist) sowie PCV15+PPSV23 (nur wenn PCV15 nicht substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Das ICER von PCV20 (im Vergleich zu keiner Impfung) ist geringer als jenes von PPSV23 (im Vergleich zu keiner Impfung), d.h. PPSV23 wird erweitert dominiert, da PCV20 sowohl effektiver ist als auch effizienter bezogen auf die zusätzlichen Kosten pro gewonnenem QALY. Ist PCV15 effektiver gegen Serotyp 3 als PCV20 (doppelte Dauer der Wirksamkeit), dann könnten mit der sequentiellen Impfung PCV15+PPSV23 gegenüber PCV20 531 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 213.720 Euro pro gewonnenem QALY betragen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 83.536 Euro pro gewonnenem QALY belaufen.

Tabelle 19: Ergebnisse Szenario II.a1

Fortführung der PCV13-Kinderimpfung, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: Nicht-Immunsupprimierte

Szenario II.a1	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.795	972	645	1.662	1.171	2.088	1.171	3.556	322	5.152	122	4.314
Vermiedene stationäre NBPP-Fälle	2.943	2.954	2.300	4.447	1.826	6.441	1.826	8.460	505	12.155	200	10.107
Vermiedene ambulante NBPP-Fälle	16.637	17.709	12.996	23.644	9.523	35.546	9.523	40.074	2.607	53.934	1.238	46.580
Vermiedene Sterbefälle	598	487	375	780	387	1.089	387	1.568	107	2.280	41	1.892
Gewonnene Lebensjahre	12.074	9.412	6.821	14.241	7.572	19.985	7.572	27.478	2.078	38.952	794	32.784
Gewonnenen QALYs	11.566	8.729	6.307	13.193	7.370	18.491	7.370	25.439	2.268	36.826	738	31.099
NNV zur Vermeidung einer Hospitalisierung	791	955	1.269	614	1.247	440	1.247	312	4.521	217	11.589	260
NNV zur Vermeidung eines Sterbefalls	6.274	7.690	9.971	4.804	9.661	3.442	9.661	2.390	34.968	1.644	91.743	1.982
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	29.200.908	21.907.985	15.837.408	34.156.561	23.419.486	46.662.067	35.924.992	67.575.742	5.076.075	96.791.116	1.982.551	81.051.325
Vermiedene indirekte Krankheitskosten (€)	20.458.091	21.300.636	14.396.802	26.186.684	16.581.649	34.332.043	24.727.008	40.374.848	2.901.155	51.203.864	1.346.290	45.639.198
Zusätzliche gesellschaftliche Kosten (€)	86.308.715	213.206.919	225.766.348	219.018.488	238.945.615	198.367.621	218.294.749	171.411.143	127.575.501	131.366.752	132.223.890	152.671.209
Gewonnenen QALYs diskontiert mit 3%	6.926	5.202	3.659	7.680	5.092	10.722	8.134	14.529	1.328	20.797	435	17.657
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	79.883.270	190.531.139	199.400.893	198.391.053	212.934.127	183.141.109	197.684.183	163.979.672	110.922.681	135.738.879	114.455.594	150.654.848
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	11.533	36.624	54.501	25.832	41.816	17.081	24.303	11.286	83.536	6.527	263.042	8.532

5.4.5.2 Ergebnisse Szenario II.a2: Wechsel auf PCV15-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario II.a2 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.421 IPD-Fälle, 4.653 Hospitalisierungen durch NBPP sowie 804 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 766 IPD-Fälle, 2.296 Hospitalisierungen durch NBPP sowie 422 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 1.912 IPD-Fälle, 4.046 Hospitalisierungen durch NBPP sowie 795 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 726 IPD-Fälle, 2.198 Hospitalisierungen durch NBPP sowie 403 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 1.450 IPD-Fälle, 1.884 Hospitalisierungen durch NBPP sowie 460 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 264 IPD-Fälle, 35 Hospitalisierungen durch NBPP sowie 68 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 327 IPD-Fälle, 512 Hospitalisierungen durch NBPP sowie 108 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 4.455 und zur Vermeidung eines krankheitsbedingten Sterbefalls 34.456 betragen. Die NNVs von PCV20 würden bei 367 pro vermiedene Hospitalisierung und bei 2.829 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 (auch wenn PCV15 effektiver gegen Serotyp 3 ist) sowie PCV15+PPSV23 (nur wenn PCV15 nicht substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Das ICER von PCV20 (im Vergleich zu keiner Impfung) ist geringer als jenes von PPSV23 (im Vergleich zu keiner Impfung), d.h. PPSV23 wird erweitert dominiert, da PCV20 sowohl effektiver als auch effizienter bezogen auf die zusätzlichen Kosten pro gewonnenem QALY ist. Ist PCV15 effektiver gegen Serotyp 3 als PCV20 (doppelte Dauer der Wirksamkeit), dann könnten mit der sequentiellen Impfung PCV15+PPSV23 gegenüber PCV20 767 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 146.599 Euro pro gewonnenem QALY betragen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 82.206 Euro pro gewonnenem QALY belaufen.

Tabelle 20: Ergebnisse Szenario II.a2

Wechsel auf PCV15-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: Nicht-Immunsupprimierte

Szenario II.a2	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.557	994	655	1.067	1.186	1.529	1.186	2.978	327	4.674	123	3.746
Vermiedene stationäre NBPP-Fälle	2.585	3.043	2.357	3.192	1.849	5.354	1.849	7.238	512	11.175	201	8.905
Vermiedene ambulante NBPP-Fälle	14.775	18.357	13.498	19.004	9.645	31.885	9.645	35.594	2.647	50.357	1.243	42.184
Vermiedene Sterbefälle	521	501	383	530	392	865	392	1.325	108	2.083	41	1.652
Gewonnene Lebensjahre	10.562	9.706	7.026	10.219	7.668	16.441	7.668	23.579	2.109	35.784	797	28.950
Gewonnenen QALYs	10.167	9.002	6.499	9.477	7.464	15.214	7.464	21.837	2.303	33.908	740	27.567
NNV zur Vermeidung einer Hospitalisierung	905	929	1.241	880	1.231	545	1.231	367	4.455	237	11.543	296
NNV zur Vermeidung eines Sterbefalls	7.198	7.480	9.767	7.067	9.542	4.333	9.542	2.829	34.456	1.800	91.381	2.269
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	25.510.002	22.525.002	16.229.364	23.799.006	16.985.719	37.347.866	30.534.579	57.520.195	5.152.355	88.597.860	1.990.495	71.158.632
Vermiedene indirekte Krankheitskosten (€)	18.307.627	22.165.488	15.201.703	22.810.916	15.506.222	31.572.009	24.267.315	37.171.134	2.947.537	48.664.364	1.351.847	42.514.321
Zusätzliche gesellschaftliche Kosten (€)	92.150.085	211.725.050	224.569.490	232.751.810	246.454.809	210.441.857	224.144.856	184.670.403	127.452.839	142.099.508	132.210.390	165.688.779
Gewonnenen QALYs diskontiert mit 3%	6.103	5.365	3.780	5.643	3.936	8.932	7.224	12.559	1.348	19.200	437	15.727
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	84.384.077	189.366.082	198.405.586	207.992.333	217.732.145	191.554.106	201.293.918	173.214.696	110.827.290	143.220.884	114.445.062	159.709.746
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	13.827	35.300	52.489	36.856	55.324	21.447	27.865	13.792	82.206	7.459	261.965	10.155

5.4.5.3 Ergebnisse Szenario II.a3: Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3

Epidemiologie

In Szenario II.a3 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.346 IPD-Fälle, 4.009 Hospitalisierungen durch NBPP sowie 726 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 814 IPD-Fälle, 2.449 Hospitalisierungen durch NBPP sowie 450 krankheitsbedingte Sterbefälle. Sollte die Erwachsenen-Impfung mit PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 1.817 IPD-Fälle, 3.347 Hospitalisierungen durch NBPP sowie 697 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 567 IPD-Fälle, 1.394 Hospitalisierungen durch NBPP sowie 283 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 349 IPD-Fälle, 549 Hospitalisierungen durch NBPP sowie 116 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 4.163 und zur Vermeidung eines krankheitsbedingten Sterbefalls 32.176 betragen. Die NNVs von PCV20 würden bei 385 pro vermiedene Hospitalisierung und bei 2.947 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23, d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 5.249 QALYs (diskontiert mit 3%) gewonnen werden Das ICER würde 18.825 Euro pro gewonnenem QALY betragen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 76.931 Euro pro gewonnenem QALY belaufen.

Tabelle 21: Ergebnisse Szenario II.a3

Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: Nicht-Immunsupprimierte

Szenario II.a3	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.589	837	532	n/a	n/a	1.117	1.250	2.934	349	4.716	124	3.769
Vermiedene stationäre NBPP-Fälle	2.804	2.361	1.560	n/a	n/a	3.466	1.952	6.813	549	10.953	203	8.638
Vermiedene ambulante NBPP-Fälle	16.226	13.197	7.403	n/a	n/a	19.642	10.157	31.378	2.825	46.863	1.254	38.518
Vermiedene Sterbefälle	547	398	276	n/a	n/a	575	414	1.272	116	2.069	41	1.630
Gewonnene Lebensjahre	11.078	7.425	4.645	n/a	n/a	10.721	8.080	22.087	2.253	34.901	805	27.929
Gewonnenen QALYs	10.674	6.886	4.284	n/a	n/a	9.928	7.870	20.449	2.459	33.147	747	26.678
NNV zur Vermeidung einer Hospitalisierung	853	1.172	1.786	n/a	n/a	818	1.167	385	4.163	239	11.438	302
NNV zur Vermeidung eines Sterbefalls	6.859	9.422	13.562	n/a	n/a	6.516	9.038	2.947	32.176	1.812	90.538	2.300
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	n/a	n/a	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	26.783.277	17.863.769	11.316.392	n/a	n/a	25.175.454	18.104.989	54.888.516	5.507.129	87.538.557	2.008.524	69.747.043
Vermiedene indirekte Krankheitskosten (€)	19.957.616	15.154.183	7.051.449	n/a	n/a	19.997.196	11.549.960	30.807.878	3.116.921	42.772.880	1.363.021	36.489.736
Zusätzliche gesellschaftliche Kosten (€)	89.226.821	223.397.588	237.632.717	n/a	n/a	234.189.083	249.291.801	193.665.338	126.928.681	149.050.295	132.181.187	173.124.953
Gewonnenen QALYs diskontiert mit 3%	6.415	4.081	2.415	n/a	n/a	5.860	4.069	11.664	1.436	18.637	441	15.093
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	81.952.760	198.732.377	209.079.537	n/a	n/a	209.646.000	220.700.833	180.772.604	110.446.926	149.411.019	114.423.084	166.242.328
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	12.775	48.694	86.582	n/a	n/a	35.778	54.243	15.498	76.931	8.017	259.611	11.015

5.4.5.4 Ergebnisse Szenario II.a4: Wechsel auf PCV20-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario II.a4 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 515 IPD-Fälle, 2.788 Hospitalisierungen durch NBPP sowie 414 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 206 IPD-Fälle, 407 Hospitalisierungen durch NBPP sowie 80 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 326 IPD-Fälle, 387 Hospitalisierungen durch NBPP sowie 90 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 367 IPD-Fälle, 488 Hospitalisierungen durch NBPP sowie 109 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 474 IPD-Fälle, 746 Hospitalisierungen durch NBPP sowie 158 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 684 IPD-Fälle, 3.780 Hospitalisierungen durch NBPP sowie 568 krankheitsbedingte Sterbefälle vermieden werden. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 783 IPD-Fälle, 3.930 Hospitalisierungen durch NBPP sowie 600 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 3.947 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 24.327 Euro pro gewonnenem QALY liegen würde. Durch die sequentielle Impfung PCV20+PPSV23 könnten im Vergleich zu PCV13+PPSV23 590 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 28.900 Euro pro gewonnenem QALY betragen. PCV20+PPSV23 würde die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 1.944 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 55.636 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentiellen Impfungen PCV13+PPSV23 sowie PCV20+PPSV23. Durch die sequentielle Impfung PCV15+PPSV23 könnten gegenüber PCV15 noch einmal 2.320 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 45.673 Euro pro gewonnenem QALY betragen.

Tabelle 22: Ergebnisse Szenario II.a4

Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: Nicht-Immunsupprimierte

Szenario II.a4	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	999	1.233	608	1.308	573	2.199	573	1.515	474	3.893	125	2.634
Vermiedene stationäre NBPP-Fälle	1.826	4.054	948	4.207	895	8.394	895	4.614	746	10.107	205	7.051
Vermiedene ambulante NBPP-Fälle	11.086	25.862	4,944	26.533	4.659	51.249	4.659	28.394	3.834	49.216	1.270	37.983
Vermiedene Sterbefälle	351	655	201	685	190	1.334	190	765	158	1.823	42	1.243
Gewonnene Lebensjahre	7.239	13.060	3,933	13.591	3.708	25.576	3.708	15.046	3.059	32.127	814	22.872
Gewonnenen QALYs	7.228	12.112	4,151	12.604	3.942	23.654	3.942	13.954	3.338	30.891	756	22.301
NNV zur Vermeidung einer Hospitalisierung	1.327	709	2,403	680	2.545	354	2.545	612	3.063	268	11.309	387
NNV zur Vermeidung eines Sterbefalls	10.677	5.724	18,616	5.472	19.708	2.811	19.708	4.898	23.669	2.056	89.589	3.015
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	17.220.102	29.474.860	21.834.873	30.791.236	9.037.827	56.939.690	9.037.827	34.370.295	7.479.902	77.863.014	2.032.346	54.271.126
Vermiedene indirekte Krankheitskosten (€)	14.056.772	32.283.221	23.867.244	32.963.587	5.279.235	49.176.178	5.279.235	34.968.646	4.203.530	51.189.167	1.384.576	42.589.030
Zusätzliche gesellschaftliche Kosten (€)	104.690.841	194.657.459	210.298.441	215.606.909	121.235.669	173.245.864	121.235.669	210.022.791	123.869.300	150.309.551	132.135.809	182.501.577
Gewonnenen QALYs diskontiert mit 3%	4.362	7.213	5.301	7.503	2.320	13.769	2.320	8.310	1.944	17.623	446	12.906
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	94.079.340	175.962.211	187.107.611	194.521.034	105.964.968	163.715.863	105.964.968	190.107.951	108.140.785	148.050.543	114.385.112	170.652.785
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	21.566	24.394	35.298	25.925	45.673	11.890	45.673	22.878	55.636	8.401	256.310	13.223

5.4.5.5 Ergebnisse Szenario II.a5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall

Epidemiologie

In Szenario II.a5 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 139 IPD-Fälle, 979 Hospitalisierungen durch NBPP sowie 150 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 206 IPD-Fälle, 407 Hospitalisierungen durch NBPP sowie 80 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 326 IPD-Fälle, 387 Hospitalisierungen durch NBPP sowie 90 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 367 IPD-Fälle, 488 Hospitalisierungen durch NBPP sowie 109 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 474 IPD-Fälle, 746 Hospitalisierungen durch NBPP sowie 158 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 16 IPD-Fälle, 640 Hospitalisierungen durch NBPP sowie 82 krankheitsbedingte Sterbefälle vermieden werden. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 115 IPD-Fälle, 789 Hospitalisierungen durch NBPP sowie 114 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 657 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 183.398 Euro pro gewonnenem QALY liegen würde. Die sequentielle Impfung PCV20+PPSV23 würde einen geringeren ICER (im Vergleich zu keiner Impfung) aufweisen als PCV13+PPSV23 d.h. PCV13+PPSV23 würde erweitert dominiert, da PCV20+PPSV23 sowohl effektiver als auch effizienter bezogen auf die zusätzlichen Kosten pro gewonnenem QALY ist. Zudem würde PCV20+PPSV23 die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 1.944 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 55.636 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentielle Impfung PCV13+PPSV23 erweitert dominieren und PCV20+PPSV23 dominieren. Durch die sequentielle Impfung PCV15+PPSV23 könnten gegenüber PCV15 noch einmal 2.320 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 45.673 Euro pro gewonnenem QALY betragen.

Tabelle 23: Ergebnisse Szenario II.a5

Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: Nicht-Immunsupprimierte

Szenario II.a5	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	905	762	608	837	573	1.060	573	1.043	474	3.422	125	2.163
Vermiedene stationäre NBPP-Fälle	1.610	2.029	948	2.182	895	3.229	895	2.589	746	8.082	205	5.026
Vermiedene ambulante NBPP-Fälle	9.393	10.624	4.944	11.295	4.659	17.474	4.659	13.156	3.834	33.978	1.270	22.745
Vermiedene Sterbefälle	308	347	201	377	190	539	190	458	158	1.515	42	936
Gewonnene Lebensjahre	6.257	6.282	3.933	6.813	3.708	9.809	3.708	8.268	3.059	25.349	814	16.094
Gewonnenen QALYs	6.321	5.826	4.151	6.318	3.942	9.080	3.942	7.667	3.338	24.604	756	16.014
NNV zur Vermeidung einer Hospitalisierung	1.491	1.344	2.403	1.242	2.545	874	2.545	1.032	3.063	326	11.309	522
NNV zur Vermeidung eines Sterbefalls	12.173	10.800	18.616	9.937	19.708	6.950	19.708	8.192	23.669	2.474	89.589	4.007
Ökonomisch: Ergebnisse im Vergleich zu	keine Imp- fung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23+	keine Impfung	PPSV23	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	15.326.957	15.596.788	9.849.944	16.913.163	10.624.033	23.450.277	17.161.147	20.492.223	12.645.168	63.984.941	2.032.346	40.393.053
Vermiedene indirekte Krankheitskosten (€)	11.609.719	11.635.761	5.666.836	12.316.128	5.985.643	16.369.275	10.038.791	14.321.187	6.914.997	30.541.708	1.384.576	21.941.570
Zusätzliche gesellschaftliche Kosten (€)	109.031.037	229.182.991	240.483.777	250.132.441	262.337.073	239.542.180	251.746.812	244.548.323	259.386.585	184.835.083	132.135.809	217.027.108
Gewonnenen QALYs diskontiert mit 3%	3.799	3.359	2.010	3.649	2.170	5.215	3.737	4.456	2.600	13.768	446	9.051
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	97.686.501	203.979.868	211.518.107	222.538.691	230.817.157	214.837.398	223.115.864	218.125.608	228.579.891	176.068.200	114.385.112	198.670.442
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	25.715	60.722	105.230	60.987	106.358	41.193	59.711	48.956	87.901	12.788	256.310	21.949

5.4.6 Ergebnisse Szenario II.b1-II.b5: Risikogruppen: Nicht-Immunsupprimierte, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD

5.4.6.1 Ergebnisse Szenario II.b1: Fortführung der PCV13-Kinderimpfung

Epidemiologie

In Szenario II.b1 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.761 IPD-Fälle, 5.634 Hospitalisierungen durch NBPP sowie 993 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 1.117 IPD-Fälle, 3.885 Hospitalisierungen durch NBPP sowie 672 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 1.894 IPD-Fälle, 4.819 Hospitalisierungen durch NBPP sowie 877 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 723 IPD-Fälle, 2.643 Hospitalisierungen durch NBPP sowie 453 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 1.467 IPD-Fälle, 3.928 Hospitalisierungen durch NBPP sowie 682 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 296 IPD-Fälle, 1.752 Hospitalisierungen durch NBPP sowie 259 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 322 IPD-Fälle, 602 Hospitalisierungen durch NBPP sowie 117 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 4.046 und zur Vermeidung eines krankheitsbedingten Sterbefalls 31.900 betragen. Die NNVs von PCV20 würden bei 301 pro vermiedene Hospitalisierung und bei 2.308 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23 (auch wenn PCV15 substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 7.316 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde bei 12.281 Euro pro gewonnenem QALY liegen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 76.655 Euro pro gewonnenem QALY belaufen.

Tabelle 24: Ergebnisse Szenario II.b1

Fortführung der PCV13-Kinderimpfung, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: Nicht-Immunsupprimierte

Szenario II.b1	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.795	972	645	1.662	1.171	2.088	1.171	3.556	322	5.152	122	4.314
Vermiedene stationäre NBPP-Fälle	3.255	2.276	1.749	4.070	2.176	4.961	2.176	8.889	602	13.122	223	10.870
Vermiedene ambulante NBPP-Fälle	19.050	11.725	7.866	19.332	12.133	24.149	12.133	40.379	3.321	57.611	1.393	48.718
Vermiedene Sterbefälle	632	421	321	748	424	942	424	1.625	117	2.398	43	1.985
Gewonnene Lebensjahre	12.699	7.800	5.483	13.163	8.289	16.785	8.289	27.851	2.276	40.297	840	33.745
Gewonnenen QALYs	12.150	7.213	5.048	12.176	8.041	15.487	8.041	25.777	2.454	38.070	781	31.986
NNV zur Vermeidung einer Hospitalisierung	742	1.154	1.562	654	1.117	532	1.117	301	4.046	205	10.816	247
NNV zur Vermeidung eines Sterbefalls	5.935	8.900	11.645	5.015	8.817	3.979	8.817	2.308	31.900	1.563	86.742	1.889
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	30.608.737	18.592.751	13.115.126	32.145.011	21.595.899	39.737.926	29.188.813	69.069.174	5.517.991	100.619.863	2.087.590	83.984.596
Vermiedene indirekte Krankheitskosten (€)	22.129.260	12.921.541	7.142.323	18.834.310	9.797.022	22.543.018	13.505.730	36.009.128	3.498.847	48.740.343	1.483.008	42.378.719
Zusätzliche gesellschaftliche Kosten (€)	83.229.716	224.901.249	235.743.108	228.382.411	247.553.829	217.080.788	236.252.207	174.283.430	126.535.893	130.001.525	131.982.134	152.998.417
Gewonnenen QALYs diskontiert mit 3%	7.260	4.223	2.842	6.975	4.450	8.871	6.346	14.576	1.437	21.340	461	18.005
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	77.613.451	200.403.260	207.823.516	206.589.763	220.428.197	198.261.042	212.099.476	167.462.922	110.120.903	136.206.891	114.266.596	152.320.435
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	10.690	47.460	73.137	29.618	49.539	22.348	33.423	11.489	76.655	6.383	247.954	8.460

5.4.6.2 Ergebnisse Szenario II.b2: Wechsel auf PCV15-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario II.b2 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.421 IPD-Fälle, 4.538 Hospitalisierungen durch NBPP sowie 801 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 766 IPD-Fälle, 2.774 Hospitalisierungen durch NBPP sowie 476 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 1.912 IPD-Fälle, 4.859 Hospitalisierungen durch NBPP sowie 884 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 726 IPD-Fälle, 2.656 Hospitalisierungen durch NBPP sowie 455 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 1.450 IPD-Fälle, 3.893 Hospitalisierungen durch NBPP sowie 673 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 264 IPD-Fälle, 1.690 Hospitalisierungen durch NBPP sowie 244 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 327 IPD-Fälle, 611 Hospitalisierungen durch NBPP sowie 119 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 3.987 und zur Vermeidung eines krankheitsbedingten Sterbefalls 31.434 betragen. Die NNVs von PCV20 würden bei 363 pro vermiedene Hospitalisierung und bei 2.783 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23 (auch wenn PCV15 substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 5.966 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde bei 16.060 Euro pro gewonnenem QALY liegen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 75.427 Euro pro gewonnenem QALY belaufen.

Tabelle 25: Ergebnisse Szenario II.b2

Wechsel auf PCV15-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: Nicht-Immunsupprimierte

Szenario II.b2	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.557	994	655	1.067	695	1.529	1.186	2.978	327	4.674	123	3.746
Vermiedene stationäre NBPP-Fälle	2.819	2.320	1.764	2.498	1.882	3.464	2.203	7.357	611	11.860	224	9.360
Vermiedene ambulante NBPP-Fälle	16.584	12.002	8.053	12.831	8.536	18.045	12.288	34.083	3.372	52.396	1.398	42.529
Vermiedene Sterbefälle	547	430	325	463	345	674	429	1.347	119	2.170	43	1.711
Gewonnene Lebensjahre	11.023	7.994	5.600	8.562	5.933	12.484	8.394	23.385	2.310	36.611	844	29.351
Gewonnenen QALYs	10.597	7.391	5.157	7.918	5.465	11.504	8.144	21.644	2.491	34.669	784	27.931
NNV zur Vermeidung einer Hospitalisierung	857	1.131	1.545	1.052	1.450	751	1.103	363	3.987	227	10.773	286
NNV zur Vermeidung eines Sterbefalls	6.858	8.711	11.516	8.099	10.820	5.564	8.709	2.783	31.434	1.728	86.400	2.190
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	26.558.244	18.995.982	13.310.820	20.398.663	14.152.545	28.623.764	22.377.646	57.653.901	5.600.797	91.187.226	2.095.953	72.748.550
Vermiedene indirekte Krankheitskosten (€)	19.423.370	13.321.856	7.583.179	14.104.565	7.954.059	18.094.372	11.943.866	31.487.881	3.554.802	44.977.380	1.489.129	37.952.920
Zusätzliche gesellschaftliche Kosten (€)	89.986.100	224.097.702	235.106.559	244.858.504	256.840.146	232.643.596	244.625.237	190.219.950	126.397.133	143.197.127	131.967.649	168.660.263
Gewonnenen QALYs diskontiert mit 3%	6.346	4.328	2.914	4.637	3.088	6.686	5.137	12.312	1.459	19.474	463	15.785
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	82.827.309	199.774.143	207.261.976	218.193.619	226.475.555	209.211.923	217.493.858	178.649.659	110.012.936	145.490.510	114.255.292	163.302.347
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	13.052	46.155	71.131	47.056	73.349	31.289	42.337	14.510	75.427	7.471	246.937	10.345

5.4.6.3 Ergebnisse Szenario II.b3: Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3

Epidemiologie

In Szenario II.b3 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 1.346 IPD-Fälle, 4.372 Hospitalisierungen durch NBPP sowie 771 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 814 IPD-Fälle, 2.960 Hospitalisierungen durch NBPP sowie 508 krankheitsbedingte Sterbefälle. Sollte die Erwachsenen-Impfung mit PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 1.817 IPD-Fälle, 4.740 Hospitalisierungen durch NBPP sowie 847 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 567 IPD-Fälle, 2.414 Hospitalisierungen durch NBPP sowie 394 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 349 IPD-Fälle, 654 Hospitalisierungen durch NBPP sowie 127 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 3.725 und zur Vermeidung eines krankheitsbedingten Sterbefalls 29.350 betragen. Die NNVs von PCV20 würden bei 364 pro vermiedene Hospitalisierung und bei 2.800 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23, d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 5.367 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 18.670 Euro pro gewonnenem QALY betragen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 70.544 Euro pro gewonnenem QALY belaufen.

Tabelle 26: Ergebnisse Szenario II.b3

Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: Nicht-Immunsupprimierte

Szenario II.b3	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	1.589	837	532	n/a	n/a	1.117	778	2.934	349	4.716	124	3.769
Vermiedene stationäre NBPP-Fälle	2.992	2.017	1.413	n/a	n/a	2.624	1.959	7.364	654	12.108	226	9.559
Vermiedene ambulante NBPP-Fälle	17.602	9.995	5.684	n/a	n/a	13.175	8.513	33.286	3.598	52.513	1.411	42.440
Vermiedene Sterbefälle	568	366	263	n/a	n/a	492	377	1.339	127	2.205	44	1.738
Gewonnene Lebensjahre	11.424	6.563	4.223	n/a	n/a	8.889	6.311	22.833	2.468	36.731	851	29.324
Gewonnenen QALYs	10.996	6.074	3.886	n/a	n/a	8.208	5.799	21.139	2.660	34.849	791	27.974
NNV zur Vermeidung einer Hospitalisierung	818	1.313	1.922	n/a	n/a	1.002	1.365	364	3.725	223	10.675	281
NNV zur Vermeidung eines Sterbefalls	6.604	10.248	14.209	n/a	n/a	7.621	9.905	2.800	29.350	1.700	85.603	2.157
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	n/a	n/a	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	27.608.723	16.144.587	10.522.252	n/a	n/a	21.225.048	15.035.862	57.057.146	5.987.773	92.321.896	2.114.935	73.510.580
Vermiedene indirekte Krankheitskosten (€)	20.465.696	10.226.847	4.061.451	n/a	n/a	12.922.545	6.340.980	29.175.926	3.758.765	43.225.517	1.501.435	36.049.862
Zusätzliche gesellschaftliche Kosten (€)	87.893.296	230.044.106	241.416.854	n/a	n/a	245.214.139	257.569.907	193.128.660	125.806.193	143.814.319	131.936.362	169.801.290
Gewonnenen QALYs diskontiert mit 3%	6.580	3.531	2.133	n/a	n/a	4.776	3.242	11.947	1.553	19.471	467	15.707
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	81.178.912	204.552.279	212.420.161	n/a	n/a	218.767.555	227.437.893	181.375.650	109.583.870	146.683.830	114.231.736	164.865.444
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	12.337	57.936	99.582	n/a	n/a	45.805	70.146	15.182	70.544	7.534	244.716	10.496

5.4.6.4 Ergebnisse Szenario II.b4: Wechsel auf PCV20-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario II.b4 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 515 IPD-Fälle, 1.660 Hospitalisierungen durch NBPP sowie 302 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 206 IPD-Fälle, 486 Hospitalisierungen durch NBPP sowie 89 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 326 IPD-Fälle, 460 Hospitalisierungen durch NBPP sowie 97 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 367 IPD-Fälle, 580 Hospitalisierungen durch NBPP sowie 119 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 474 IPD-Fälle, 890 Hospitalisierungen durch NBPP sowie 173 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 684 IPD-Fälle, 1.385 Hospitalisierungen durch NBPP sowie 319 krankheitsbedingte Sterbefälle vermieden werden. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 783 IPD-Fälle, 1.562 Hospitalisierungen durch NBPP sowie 354 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 2.426 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 45.690 Euro pro gewonnenem QALY liegen würde. Durch die sequentielle Impfung PCV20+PPSV23 könnten im Vergleich zu PCV13+PPSV23 658 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 25.236 Euro pro gewonnenem QALY betragen. PCV20+PPSV23 würde die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 2.103 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 50.861 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentielle Impfung PCV13+PPSV23 erweitert dominieren und PCV20+PPSV23 dominieren. Durch die sequentielle Impfung PCV15+PPSV23 könnten gegenüber PCV15 noch einmal 2.515 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 41.559 Euro pro gewonnenem QALY betragen.

Tabelle 27: Ergebnisse Szenario II.b4

Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen:

Nicht-Immunsupprimierte

Szenario II.b4	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	999	1.233	608	1.308	573	2.199	573	1.515	474	3.893	125	2.634
Vermiedene stationäre NBPP-Fälle	1.800	2.791	1.129	2.974	1.067	4.845	1.067	3.460	890	9.759	229	6.391
Vermiedene ambulante NBPP-Fälle	10.790	15.050	6.300	15.911	5.936	25.919	5.936	18.297	4.883	44.087	1.429	30.584
Vermiedene Sterbefälle	350	529	220	563	208	971	208	652	173	1.802	44	1.184
Gewonnene Lebensjahre	7.134	10.146	4.306	10.734	4.059	18.286	4.059	12.342	3.350	30.873	861	21.038
Gewonnenen QALYs	7.128	9.374	4.500	9.919	4.271	16.821	4.271	11.411	3.611	29.701	800	20.570
NNV zur Vermeidung einer Hospitalisierung	1.339	932	2.152	875	2.279	532	2.279	754	2.740	275	10.555	415
NNV zur Vermeidung eines Sterbefalls	10.722	7.084	16.989	6.663	17.984	3.860	17.984	5.752	21.589	2.081	84.704	3.165
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	17.059.633	23.376.068	16.723.948	24.824.740	17.585.121	40.685.116	9.820.014	28.755.048	8.133.602	75.742.967	2.140.007	50.787.774
Vermiedene indirekte Krankheitskosten (€)	12.993.514	17.896.729	11.708.576	18.721.897	12.096.927	26.113.419	6.368.543	21.154.607	5.068.599	40.173.230	1.525.191	30.372.788
Zusätzliche gesellschaftliche Kosten (€)	105.914.567	215.142.744	227.568.034	235.815.095	249.264.702	212.563.198	119.364.174	229.452.077	122.350.531	163.445.536	131.887.534	198.201.170
Gewonnenen QALYs diskontiert mit 3%	4.288	5.503	3.871	5.823	4.050	9.727	2.515	6.715	2.103	16.766	473	11.755
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	95.197.438	192.742.317	201.213.958	211.084.618	220.395.798	194.207.772	104.508.618	206.051.492	106.977.632	159.530.958	114.190.871	183.949.117
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	22.199	35.025	51.979	36.247	54.420	19.966	41.559	30.687	50.861	9.515	241.591	15.649

5.4.6.5 Ergebnisse Szenario II.b5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall

Epidemiologie

In Szenario II.b5 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 139 IPD-Fälle, 836 Hospitalisierungen durch NBPP sowie 138 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 206 IPD-Fälle, 468 Hospitalisierungen durch NBPP sowie 89 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 326 IPD-Fälle, 460 Hospitalisierungen durch NBPP sowie 97 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 367 IPD-Fälle, 580 Hospitalisierungen durch NBPP sowie 119 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 474 IPD-Fälle, 890 Hospitalisierungen durch NBPP sowie 173 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 16 IPD-Fälle sowie 13 krankheitsbedingte Sterbefälle vermieden werden, jedoch würde die Anzahl der Hospitalisierungen durch NBPP um 19 steigen. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 115 IPD-Fälle, 159 Hospitalisierungen durch NBPP sowie 48 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 407 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 302.583 Euro pro gewonnenem QALY liegen würde. Durch die sequentielle Impfung PCV20+PPSV23 könnten im Vergleich zu PCV13+PPSV23 658 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 25.236 Euro pro gewonnenem QALY betragen. Zudem würde PCV20+PPSV23 die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 2.103 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 50.861 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentiellen Impfungen PCV13+PPSV23 sowie PCV20+PPSV23. Zudem würde die sequentielle Impfung PCV15+PPSV23 die Impfung mit PCV15 erweitert dominieren. Gegenüber PCV15 könnten durch PCV15+PPSV23 noch einmal 2.515 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 41.559 Euro pro gewonnenem QALY betragen.

Tabelle 28: Ergebnisse Szenario II.b5

Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: Nicht-Immunsupprimierte

Szenario II.b5	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	905	762	608	837	573	1.060	573	1.043	474	3.422	125	2.163
Vermiedene stationäre NBPP-Fälle	1.701	1.868	1.129	2.051	1.067	2.519	1.067	2.537	890	8.836	229	5.468
Vermiedene ambulante NBPP-Fälle	10.122	9.007	6.300	9.868	5.936	12.370	5.936	12.253	4.883	38.044	1.429	24.541
Vermiedene Sterbefälle	319	334	220	367	208	469	208	456	173	1.606	44	989
Gewonnene Lebensjahre	6.427	5.845	4.306	6.433	4.059	8.321	4.059	8.041	3.350	26.572	861	16.737
Gewonnenen QALYs	6.480	5.413	4.500	5.958	4.271	7.684	4.271	7.451	3.611	25.741	800	16.610
NNV zur Vermeidung einer Hospitalisierung	1.439	1.425	2.152	1.298	2.279	1.048	2.279	1.047	2.740	306	10.555	491
NNV zur Vermeidung eines Sterbefalls	11.767	11.228	16.989	10.205	17.984	7.985	17.984	8.213	21.589	2.334	84.704	3.790
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV21	keine Impfung
Impfkosten	135.967.714	256.415.540	256.000.558	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	278.946.750	279.361.732	135.552.732	279.361.732
Vermiedene direkte Krankheitskosten (€)	15.727.062	14.752.876	9.433.328	16.201.548	10.294.501	20.166.642	14.259.595	20.131.856	12.538.397	67.119.775	2.140.007	42.164.582
Vermiedene indirekte Krankheitskosten (€)	11.836.586	8.708.714	3.677.489	9.533.882	4.065.839	11.381.762	5.913.720	11.966.592	5.198.604	30.985.214	1.525.191	21.184.773
Zusätzliche gesellschaftliche Kosten (€)	108.404.066	232.953.950	242.889.742	253.626.302	264.586.410	247.813.328	258.773.435	247.263.284	261.209.749	181.256.743	131.887.534	216.012.377
Gewonnenen QALYs diskontiert mit 3%	3.887	3.082	1.852	3.403	2.031	4.379	3.007	4.294	2.511	14.345	473	9.334
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	97.266.357	207.192.548	213.595.270	225.534.849	232.777.111	221.315.638	228.557.899	220.501.723	230.212.998	173.981.189	114.190.871	198.399.348
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	25.026	67.219	115.325	66.278	114.617	50.543	76.013	51.352	91.696	12.128	241.591	21.255

5.4.7 Ergebnisse Szenario III.a1-III.a5: Risikogruppen: keine Grunderkrankungen, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ

5.4.7.1 Ergebnisse Szenario III.a1: Fortführung der PCV13-Kinderimpfung

Epidemiologie

In Szenario III.a1 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 497 IPD-Fälle, 1.266 Hospitalisierungen durch NBPP sowie 249 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 315 IPD-Fälle, 738 Hospitalisierungen durch NBPP sowie 153 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 535 IPD-Fälle, 921 Hospitalisierungen durch NBPP sowie 205 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 204 IPD-Fälle, 502 Hospitalisierungen durch NBPP sowie 102 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 414 IPD-Fälle, 463 Hospitalisierungen durch NBPP sowie 125 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 84 IPD-Fälle, 44 Hospitalisierungen durch NBPP sowie 23 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 91 IPD-Fälle, 116 Hospitalisierungen durch NBPP sowie 28 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 9.042 und zur Vermeidung eines krankheitsbedingten Sterbefalls 66.153 betragen. Die NNVs von PCV20 würden bei 636 pro vermiedene Hospitalisierung und bei 4.605 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 (auch wenn PCV15 effektiver gegen Serotyp 3 ist) sowie PCV15+PPSV23 (nur wenn PCV15 nicht substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Das ICER von PCV20 (im Vergleich zu keiner Impfung) ist geringer als jenes von PPSV23 (im Vergleich zu keiner Impfung), d.h. PPSV23 wird erweitert dominiert, da PCV20 sowohl effektiver ist als auch effizienter bezogen auf die zusätzlichen Kosten pro gewonnenem QALY. Ist PCV15 effektiver gegen Serotyp 3 als PCV20 (doppelte Dauer der Wirksamkeit), dann könnten mit der sequentiellen Impfung PCV15+PPSV23 gegenüber PCV20 145 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 396.717 Euro pro gewonnenem QALY betragen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 160.488 Euro pro gewonnenem QALY belaufen.

Tabelle 29: Ergebnisse Szenario III.a1

Fortführung der PCV13-Kinderimpfung, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: keine Grunderkrankungen

Szenario III.a1	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	506	274	182	469	331	589	331	1.004	91	1.454	35	1.218
Vermiedene stationäre NBPP-Fälle	675	678	528	1.020	419	1.478	419	1.941	116	2.789	46	2.319
Vermiedene ambulante NBPP-Fälle	4.858	5.171	3.795	6.904	2.781	10.380	2.781	11.702	761	15.749	362	13.602
Vermiedene Sterbefälle	158	126	97	202	102	282	102	407	28	591	11	491
Gewonnene Lebensjahre	3.192	2.443	1.762	3.702	2.004	5.180	2.004	7.155	550	10.134	210	8.537
Gewonnenen QALYs	3.060	2.263	1.626	3.425	1.955	4.785	1.955	6.616	606	9.587	195	8.105
NNV zur Vermeidung einer Hospitalisierung	1.586	1.969	2.633	1.258	2.493	907	2.493	636	9.042	442	23.225	530
NNV zur Vermeidung eines Sterbefalls	11.874	14.842	19.335	9.266	18.268	6.653	18.268	4.605	66.153	3.171	173.818	3.818
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	67.983.857	128.207.770	128.000.279	139.680.866	139.473.375	139.680.866	139.473.375	139.680.866	67.776.366	139.680.866	67.776.366	139.680.866
Vermiedene direkte Krankheitskosten (€)	7.586.040	5.527.902	3.964.041	8.666.127	5.887.483	11.763.167	8.984.524	17.237.862	1.321.235	24.697.155	515.304	20.689.592
Vermiedene indirekte Krankheitskosten (€)	5.744.306	6.003.436	4.055.786	7.364.844	4.660.658	9.648.161	6.943.975	11.321.757	812.432	14.332.696	378.848	12.788.091
Zusätzliche gesellschaftliche Kosten (€)	54.653.511	116.676.433	119.980.452	123.649.895	128.925.233	118.269.538	123.544.876	111.121.247	65.642.699	100.651.015	66.882.213	106.203.184
Gewonnenen QALYs diskontiert mit 3%	1.832	1.349	943	1.994	1.313	2.775	2.094	3.781	354	5.418	115	4.604
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	49.022.981	103.210.564	105.127.220	110.035.358	113.471.879	106.056.763	109.493.283	100.945.145	56.881.806	93.530.835	57.824.964	97.434.478
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	26.760	76.527	111.460	55.177	86.442	38.213	52.292	26.700	160.488	17.262	503.982	21.162

5.4.7.2 Ergebnisse Szenario III.a2: Wechsel auf PCV15-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario III.a2 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 401 IPD-Fälle, 1.068 Hospitalisierungen durch NBPP sowie 206 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 216 IPD-Fälle, 527 Hospitalisierungen durch NBPP sowie 108 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 540 IPD-Fälle, 929 Hospitalisierungen durch NBPP sowie 206 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 343 IPD-Fälle, 365 Hospitalisierungen durch NBPP sowie 103 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 409 IPD-Fälle, 432 Hospitalisierungen durch NBPP sowie 120 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 74 IPD-Fälle, 8 Hospitalisierungen durch NBPP sowie 17 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 92 IPD-Fälle, 118 Hospitalisierungen durch NBPP sowie 29 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 8.909 und zur Vermeidung eines krankheitsbedingten Sterbefalls 65.184 betragen. Die NNVs von PCV20 würden bei 749 pro vermiedene Hospitalisierung und bei 5.449 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23 (auch wenn PCV15 substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 1.654 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde bei 32.131 Euro pro gewonnenem QALY liegen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 157.995 Euro pro gewonnenem QALY belaufen.

Tabelle 30: Ergebnisse Szenario III.a2

Wechsel auf PCV15-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: keine Grunderkrankungen

Szenario III.a2	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	440	280	185	301	196	431	335	841	92	1,319	35	1,057
Vermiedene stationäre NBPP-Fälle	593	698	541	732	563	1,229	424	1,661	118	2,564	46	2,043
Vermiedene ambulante NBPP-Fälle	4,315	5,360	3,942	5,549	4,051	9,311	2,816	10,394	773	14,705	363	12,318
Vermiedene Sterbefälle	138	130	99	137	104	224	104	344	29	540	11	429
Gewonnene Lebensjahre	2,791	2,520	1,816	2,654	1,893	4,255	2,029	6,140	558	9,309	211	7,538
Gewonnenen QALYs	2,690	2,334	1,676	2,458	1,748	3,931	1,980	5,679	615	8,827	195	7,186
NNV zur Vermeidung einer Hospitalisierung	1,815	1,915	2,574	1,814	2,460	1,129	2,462	749	8,909	483	23,133	605
NNV zur Vermeidung eines Sterbefalls	13,628	14,435	18,935	13,634	18,055	8,383	18,044	5,449	65,184	3,472	173,131	4,372
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	67,983,857	128,207,770	128,000,279	139,680,866	139,473,375	139,680,866	139,473,375	139,680,866	67,776,366	139,680,866	67,776,366	139,680,866
Vermiedene direkte Krankheitskosten (€)	6,623,545	5,681,786	4,061,276	6,009,222	4,253,778	9,364,482	7,609,038	14,658,888	1,341,106	22,592,567	517,370	18,152,530
Vermiedene indirekte Krankheitskosten (€)	5,142,091	6,247,730	4,283,393	6,428,205	4,368,250	8,883,902	6,823,948	10,433,274	825,428	13,628,842	380,412	11,921,631
Zusätzliche gesellschaftliche Kosten (€)	56,218,221	116,278,254	119,655,611	127,243,439	130,851,346	121,432,482	125,040,389	114,588,704	65,609,831	103,459,457	66,878,583	109,606,705
Gewonnenen QALYs diskontiert mit 3%	1,614	1,391	975	1,464	1,015	2,308	1,860	3,268	360	5,002	115	4,102
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	50,229,927	102,897,397	104,857,411	112,557,474	114,705,808	108,270,088	110,418,422	103,369,634	56,856,222	95,496,219	57,822,129	99,811,193
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	31,120	73,985	107,566	76,897	112,992	46,909	59,380	31,632	157,995	19,091	501,940	24,331

5.4.7.3 Ergebnisse Szenario III.a3: Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3

Epidemiologie

In Szenario III.a3 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 380 IPD-Fälle, 920 Hospitalisierungen durch NBPP sowie 186 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 230 IPD-Fälle, 562 Hospitalisierungen durch NBPP sowie 115 krankheitsbedingte Sterbefälle. Sollte die Erwachsenen-Impfung mit PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 513 IPD-Fälle, 768 Hospitalisierungen durch NBPP sowie 181 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 160 IPD-Fälle, 320 Hospitalisierungen durch NBPP sowie 72 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 99 IPD-Fälle, 126 Hospitalisierungen durch NBPP sowie 31 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 8.326 und zur Vermeidung eines krankheitsbedingten Sterbefalls 60.881 betragen. Die NNVs von PCV20 würden bei 784 pro vermiedene Hospitalisierung und bei 5.679 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23, d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 1.343 QALYs (diskontiert mit 3%) gewonnen werden Das ICER würde 41.574 Euro pro gewonnenem QALY betragen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 148.121 Euro pro gewonnenem QALY belaufen.

Tabelle 31: Ergebnisse Szenario III.a3

Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: keine Grunderkrankungen

Szenario III.a3	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	448	236	150	n/a	n/a	315	353	828	99	1.331	35	1.064
Vermiedene stationäre NBPP-Fälle	643	542	358	n/a	n/a	795	448	1.563	126	2.514	47	1.982
Vermiedene ambulante NBPP-Fälle	4.738	3.854	2.162	n/a	n/a	5.736	2.966	9.162	825	13.684	366	11.248
Vermiedene Sterbefälle	144	103	71	n/a	n/a	149	109	330	31	536	11	423
Gewonnene Lebensjahre	2.920	1.926	1.202	n/a	n/a	2.777	2.138	5.751	596	9.077	212	7.271
Gewonnenen QALYs	2.818	1.784	1.107	n/a	n/a	2.568	2.087	5.318	656	8.630	197	6.956
NNV zur Vermeidung einer Hospitalisierung	1.717	2.409	3.677	n/a	n/a	1.688	2.333	784	8.326	488	22.923	615
NNV zur Vermeidung eines Sterbefalls	13.014	18.206	26.284	n/a	n/a	12.604	17.093	5.679	60.881	3.496	171.535	4.432
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	67.983.857	128.207.770	128.000.279	n/a	n/a	139.680.866	139.473.375	139.680.866	67.776.366	139.680.866	67.776.366	139.680.866
Vermiedene direkte Krankheitskosten (€)	6.933.836	4.522.099	2.856.821	n/a	n/a	6.345.614	4.543.985	14.017.649	1.433.275	22.352.190	522.051	17.822.319
Vermiedene indirekte Krankheitskosten (€)	5.607.451	4.266.363	1.979.569	n/a	n/a	5.624.435	3.241.016	8.631.782	872.768	11.958.101	383.554	10.213.873
Zusätzliche gesellschaftliche Kosten (€)	55.442.570	119.419.307	123.163.889	n/a	n/a	127.710.817	131.688.374	117.031.436	65.470.323	105.370.575	66.870.760	111.644.674
Gewonnenen QALYs diskontiert mit 3%	1.692	1.058	624	n/a	n/a	1.516	1.050	3.035	383	4.856	116	3.938
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	49.584.356	105.417.989	107.723.747	n/a	n/a	113.060.681	115.556.741	105.416.873	56.754.857	97.186.423	57.816.234	101.591.229
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	29.299	99.683	172.579	n/a	n/a	74.582	110.093	34.730	148.121	20.013	497.476	25.799

5.4.7.4 Ergebnisse Szenario III.a4: Wechsel auf PCV20-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario III.a4 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 145 IPD-Fälle, 640 Hospitalisierungen durch NBPP sowie 106 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 58 IPD-Fälle, 93 Hospitalisierungen durch NBPP sowie 21 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 92 IPD-Fälle, 89 Hospitalisierungen durch NBPP sowie 24 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 104 IPD-Fälle, 112 Hospitalisierungen durch NBPP sowie 29 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 134 IPD-Fälle, 171 Hospitalisierungen durch NBPP sowie 42 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 193 IPD-Fälle, 867 Hospitalisierungen durch NBPP sowie 146 krankheitsbedingte Sterbefälle vermieden werden. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 221 IPD-Fälle, 902 Hospitalisierungen durch NBPP sowie 154 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 1.004 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 54.684 Euro pro gewonnenem QALY liegen würde. Durch die sequentielle Impfung PCV20+PPSV23 könnten im Vergleich zu PCV13+PPSV23 153 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 60.348 Euro pro gewonnenem QALY betragen. PCV20+PPSV23 würde die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 519 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 108.224 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentielle Impfung PCV20+PPSV23. Durch die sequentielle Impfung PCV20+PPSV23 könnten gegenüber PCV15 noch einmal 618 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 89.825 Euro pro gewonnenem QALY betragen.

Tabelle 32: Ergebnisse Szenario III.a4

Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: keine Grunderkrankungen

Szenario III.a4	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	282	348	171	369	162	621	162	428	134	1.099	35	743
Vermiedene stationäre NBPP-Fälle	419	930	217	965	205	1.926	205	1.059	171	2.319	47	1.618
Vermiedene ambulante NBPP-Fälle	3.237	7.552	1.444	7.748	1.360	14.965	1.360	8.291	1.120	14.371	371	11.091
Vermiedene Sterbefälle	93	170	53	178	50	344	50	199	42	472	11	323
Gewonnene Lebensjahre	1.908	3.393	1.041	3.532	981	6.615	981	3.913	809	8.350	215	5.951
Gewonnenen QALYs	1.913	3.142	1.107	3.270	1.051	6.107	1.051	3.624	891	8.044	199	5.820
NNV zur Vermeidung einer Hospitalisierung	2.673	1.466	4.804	1.404	5.089	736	5.089	1.261	6.127	548	22.664	794
NNV zur Vermeidung eines Sterbefalls	20.259	11.035	35.203	10.547	37.272	5.442	37.272	9.434	44.786	3.968	169.733	5.809
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	67.983.857	128.207.770	67.776.366	139.680.866	67.776.366	139.680.866	67.776.366	139.680.866	67.776.366	139.680.866	67.776.366	139.680.866
Vermiedene direkte Krankheitskosten (€)	4.451.383	7.412.942	2.494.338	7.751.372	2.352.964	14.225.077	2.352.964	8.672.915	1.946.640	19.778.990	528.269	13.769.888
Vermiedene indirekte Krankheitskosten (€)	3.954.779	9.106.197	1.580.185	9.296.487	1.478.765	13.838.376	1.478.765	9.857.791	1.176.930	14.369.156	389.633	11.979.664
Zusätzliche gesellschaftliche Kosten (€)	59.577.694	111.688.630	63.701.843	122.633.007	63.944.637	111.617.414	63.944.637	121.150.160	64.652.795	105.532.720	66.858.464	113.931.314
Gewonnenen QALYs diskontiert mit 3%	1.154	1.871	653	1.947	618	3.555	618	2.158	519	4.591	118	3.368
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	52.830.242	99.292.475	55.353.050	108.934.380	55.552.167	100.913.419	55.552.167	107.757.851	56.137.966	96.714.155	57.805.945	102.635.521
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	45.793	53.075	84.797	55.960	89.825	28.389	89.825	49.931	108.224	21.066	491.214	30.473

5.4.7.5 Ergebnisse Szenario III.a5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall

Epidemiologie

In Szenario III.a5 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 39 IPD-Fälle, 225 Hospitalisierungen durch NBPP sowie 38 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 58 IPD-Fälle, 93 Hospitalisierungen durch NBPP sowie 21 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 92 IPD-Fälle, 89 Hospitalisierungen durch NBPP sowie 24 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 104 IPD-Fälle, 112 Hospitalisierungen durch NBPP sowie 29 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 134 IPD-Fälle, 171 Hospitalisierungen durch NBPP sowie 42 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 5 IPD-Fälle, 147 Hospitalisierungen durch NBPP sowie 21 krankheitsbedingte Sterbefälle vermieden werden. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 33 IPD-Fälle, 181 Hospitalisierungen durch NBPP sowie 29 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 153 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 402.197 Euro pro gewonnenem QALY liegen würde. Die sequentielle Impfung PCV20+PPSV23 würde einen geringeren ICER (im Vergleich zu keiner Impfung) aufweisen als PCV13+PPSV23 d.h. PCV13+PPSV23 würde erweitert dominiert, da PCV20+PPSV23 sowohl effektiver als auch effizienter bezogen auf die zusätzlichen Kosten pro gewonnenem QALY ist. Zudem würde PCV20+PPSV23 die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 519 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 108.224 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentielle Impfung PCV13+PPSV23 erweitert dominieren und PCV20+PPSV23 dominieren. Durch die sequentielle Impfung PCV15+PPSV23 könnten gegenüber PCV15 noch einmal 618 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 89.825 Euro pro gewonnenem QALY betragen.

Tabelle 33: Ergebnisse Szenario III.a5

Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP nach CAPNETZ, Risikogruppen: keine Grunderkrankungen

Szenario II.a5	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	255	215	171	236	162	299	162	295	134	966	35	610
Vermiedene stationäre NBPP-Fälle	369	466	217	501	205	741	205	594	171	1.855	47	1.153
Vermiedene ambulante NBPP-Fälle	2.743	3.102	1.444	3.298	1.360	5.102	1.360	3.842	1.120	9.922	371	6.642
Vermiedene Sterbefälle	81	90	53	98	50	139	50	119	42	392	11	243
Gewonnene Lebensjahre	1.647	1.628	1.041	1.767	981	2.538	981	2.149	809	6.585	215	4.187
Gewonnenen QALYs	1.672	1.508	1.107	1.637	1.051	2.346	1.051	1.990	891	6.410	199	4.186
NNV zur Vermeidung einer Hospitalisierung	3.000	2.754	4.804	2.544	5.089	1.802	5.089	2.109	6.127	665	22.664	1.063
NNV zur Vermeidung eines Sterbefalls	23.124	20.889	35.203	19.207	37.272	13.459	37.272	15.809	44.786	4.779	169.733	7.729
Ökonomisch: Ergebnisse im Vergleich zu	keine Imp- fung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV21	keine Impfung
Impfkosten	67.983.857	128.207.770	128.000.279	139.680.866	139.473.375	139.680.866	139.473.375	139.680.866	139.473.375	139.680.866	67.776.366	139.680.866
Vermiedene direkte Krankheitskosten (€)	3.966.425	3.958.082	2.485.995	4.296.512	2.683.051	5.914.938	4.301.477	5.218.055	3.198.270	16.324.130	528.269	10.315.028
Vermiedene indirekte Krankheitskosten (€)	3.262.613	3.271.205	1.588.777	3.461.495	1.677.647	4.596.967	2.813.119	4.022.799	1.937.117	8.534.164	389.633	6.144.672
Zusätzliche gesellschaftliche Kosten (€)	60.754.819	120.978.482	123.925.506	131.922.859	135.112.677	129.168.961	132.358.779	130.440.012	134.337.988	114.822.572	66.858.464	123.221.166
Gewonnenen QALYs diskontiert mit 3%	1.004	870	518	946	560	1.348	962	1.157	672	3.590	118	2.367
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	53.808.584	106.832.285	108.376.752	116.474.191	118.217.775	114.468.951	116.212.534	115.297.662	117.627.044	104.253.966	57.805.945	110.175.332
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	53.578	122.816	209.092	123.161	211.163	84.935	120.821	99.636	175.144	29.039	491.214	46.543

5.4.8 Ergebnisse Szenario III.b1-III.b5: Risikogruppen: keine Grunderkrankungen, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD

5.4.8.1 Ergebnisse Szenario III.b1: Fortführung der PCV13-Kinderimpfung

Epidemiologie

In Szenario III.b1 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 497 IPD-Fälle, 1.293 Hospitalisierungen durch NBPP sowie 254 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 315 IPD-Fälle, 892 Hospitalisierungen durch NBPP sowie 171 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 535 IPD-Fälle, 1.106 Hospitalisierungen durch NBPP sowie 226 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 204 IPD-Fälle, 607 Hospitalisierungen durch NBPP sowie 115 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 414 IPD-Fälle, 901 Hospitalisierungen durch NBPP sowie 175 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 84 IPD-Fälle, 402 Hospitalisierungen durch NBPP sowie 63 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 91 IPD-Fälle, 138 Hospitalisierungen durch NBPP sowie 31 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 8.162 und zur Vermeidung eines krankheitsbedingten Sterbefalls 60.701 betragen. Die NNVs von PCV20 würden bei 616 pro vermiedene Hospitalisierung und bei 4.463 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23 (auch wenn PCV15 substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 1.872 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde bei 28.602 Euro pro gewonnenem QALY liegen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 148.613 Euro pro gewonnenem QALY belaufen.

Tabelle 34: Ergebnisse Szenario III.b1

Fortführung der PCV13-Kinderimpfung, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: keine Grunderkrankungen

Szenario III.b1	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	506	274	182	469	331	589	331	1.004	91	1.454	35	1.218
Vermiedene stationäre NBPP-Fälle	747	522	401	934	499	1.138	499	2.040	138	3.011	51	2.494
Vermiedene ambulante NBPP-Fälle	5.563	3.424	2.297	5.645	3.543	7.052	3.543	11.791	970	16.823	407	14.226
Vermiedene Sterbefälle	166	110	83	194	111	245	111	420	31	619	11	513
Gewonnene Lebensjahre	3.346	2.039	1.425	3.427	2.182	4.385	2.182	7.234	599	10.451	221	8.759
Gewonnenen QALYs	3.205	1.883	1.310	3.166	2.121	4.040	2.121	6.687	651	9.880	205	8.310
NNV zur Vermeidung einer Hospitalisierung	1.495	2.353	3.204	1.336	2.252	1.085	2.252	616	8.162	420	21.793	505
NNV zur Vermeidung eines Sterbefalls	11.273	17.104	22.515	9.679	16.768	7.647	16.768	4.463	60.701	3.028	164.956	3.655
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	67.983.857	128.207.770	128.000.279	139.680.866	139.473.375	139.680.866	139.473.375	139.680.866	67.776.366	139.680.866	67.776.366	139.680.866
Vermiedene direkte Krankheitskosten (€)	7.915.969	4.750.149	3.324.788	8.192.348	5.457.397	10.141.910	7.406.959	17.581.653	1.424.675	25.586.561	539.848	21.369.064
Vermiedene indirekte Krankheitskosten (€)	6.218.270	3.628.162	1.998.230	5.278.647	2.734.518	6.315.720	3.771.590	10.077.394	981.620	13.625.883	417.343	11.854.782
Zusätzliche gesellschaftliche Kosten (€)	53.849.619	119.829.459	122.677.261	126.209.871	131.281.460	123.223.236	128.294.826	112.021.820	65.370.071	100.468.422	66.819.175	106.457.020
Gewonnenen QALYs diskontiert mit 3%	1.915	1.103	738	1.816	1.150	2.316	1.650	3.786	381	5.545	121	4.683
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	48.428.413	105.868.077	107.399.171	112.263.520	115.510.608	110.060.471	113.307.559	101.958.397	56.670.876	93.766.637	57.775.573	97.982.070
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	25.293	95.940	145.491	61.819	100.454	47.512	68.657	26.929	148.613	16.909	477.230	20.921

5.4.8.2 Ergebnisse Szenario III.b2: Wechsel auf PCV15-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario III.b2 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 401 IPD-Fälle, 1.041 Hospitalisierungen durch NBPP sowie 205 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 216 IPD-Fälle, 637 Hospitalisierungen durch NBPP sowie 121 krankheitsbedingte Sterbefälle. Im Vergleich zu PCV15 wären mit PCV20 zusätzlich 540 IPD-Fälle, 1.115 Hospitalisierungen durch NBPP sowie 228 krankheitsbedingte Sterbefälle präventabel und verglichen mit der sequentiellen Impfung PCV15+PPSV23 205 IPD-Fälle, 609 Hospitalisierungen durch NBPP sowie 115 krankheitsbedingte Sterbefälle. Sollte PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 409 IPD-Fälle, 893 Hospitalisierungen durch NBPP sowie 172 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 74 IPD-Fälle, 388 Hospitalisierungen durch NBPP sowie 60 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 92 IPD-Fälle, 140 Hospitalisierungen durch NBPP sowie 31 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 8.042 und zur Vermeidung eines krankheitsbedingten Sterbefalls 59.813 betragen. Die NNVs von PCV20 würden bei 741 pro vermiedene Hospitalisierung und bei 5.376 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23 (auch wenn PCV15 substantiell effektiver gegen Serotyp 3 ist), d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 1.527 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde bei 36.057 Euro pro gewonnenem QALY liegen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 146.297 Euro pro gewonnenem QALY belaufen.

Tabelle 35: Ergebnisse Szenario III.b2

Wechsel auf PCV15-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: keine Grunderkrankungen

Szenario III.b2	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	440	280	185	301	196	431	335	841	92	1.319	35	1.057
Vermiedene stationäre NBPP-Fälle	647	532	405	573	432	795	505	1.688	140	2.721	51	2.148
Vermiedene ambulante NBPP-Fälle	4.843	3.505	2.352	3.747	2.492	5.269	3.588	9.953	985	15.300	408	12.419
Vermiedene Sterbefälle	144	112	84	120	89	176	113	349	31	560	11	442
Gewonnene Lebensjahre	2.905	2.090	1.457	2.238	1.543	3.275	2.209	6.080	608	9.499	222	7.624
Gewonnenen QALYs	2.796	1.930	1.339	2.067	1.419	3.014	2.148	5.621	661	9.003	206	7.264
NNV zur Vermeidung einer Hospitalisierung	1.725	2.306	3.169	2.144	2.975	1.528	2.224	741	8.042	464	21.706	585
NNV zur Vermeidung eines Sterbefalls	13.025	16.735	22.249	15.565	20.917	10.639	16.563	5.376	59.813	3.345	164.304	4.236
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	67.983.857	128.207.770	128.000.279	139.680.866	139.473.375	139.680.866	139.473.375	139.680.866	67.776.366	139.680.866	67.776.366	139.680.866
Vermiedene direkte Krankheitskosten (€)	6.869.237	4.853.919	3.376.086	5.211.407	3.588.489	7.323.178	5.700.261	14.685.439	1.446.075	23.192.865	542.011	18.518.586
Vermiedene indirekte Krankheitskosten (€)	5.458.654	3.740.826	2.122.862	3.960.136	2.226.430	5.075.721	3.342.015	8.817.353	997.328	12.577.057	419.066	10.621.455
Zusätzliche gesellschaftliche Kosten (€)	55.655.966	119.613.025	122.501.331	130.509.324	133.658.455	127.281.967	130.431.099	116.178.073	65.332.963	103.910.944	66.815.288	110.540.825
Gewonnenen QALYs diskontiert mit 3%	1.674	1.131	758	1.212	802	1.753	1.343	3.201	387	5.063	122	4.110
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	49.824.128	105.698.518	107.244.733	115.304.541	117.064.025	112.929.235	114.688.718	104.888.444	56.641.971	96.198.959	57.772.536	100.857.933
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	29.760	93.416	141.546	95.155	145.884	64.434	85.377	32.764	146.297	18.999	475.294	24.539

5.4.8.3 Ergebnisse Szenario III.b3: Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3

Epidemiologie

In Szenario III.b3 wären PCV20-basierte Impfstrategien hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24).

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 380 IPD-Fälle, 1.003 Hospitalisierungen durch NBPP sowie 197 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit der sequentiellen Impfung PCV13+PPSV23 230 IPD-Fälle, 679 Hospitalisierungen durch NBPP sowie 129 krankheitsbedingte Sterbefälle. Sollte die Erwachsenen-Impfung mit PCV15 effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV20 im Vergleich zu PCV15 zusätzlich 513 IPD-Fälle, 1.088 Hospitalisierungen durch NBPP sowie 218 krankheitsbedingte Sterbefälle vermieden werden und im Vergleich zur sequentiellen Impfung PCV15+PPSV23 160 IPD-Fälle, 554 Hospitalisierungen durch NBPP sowie 99 krankheitsbedingte Sterbefälle.

Im Vergleich zu PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 noch einmal 99 IPD-Fälle, 150 Hospitalisierungen durch NBPP sowie 33 krankheitsbedingte Sterbefälle zusätzlich verhindert werden. Dabei würden die NNVs der zusätzlichen PPSV23-Dosis zur Vermeidung einer Hospitalisierung (durch IPD oder NBPP) 7.514 und zur Vermeidung eines krankheitsbedingten Sterbefalls 55.858 betragen. Die NNVs von PCV20 würden bei 744 pro vermiedene Hospitalisierung und bei 5.420 pro vermiedenen Sterbefall liegen.

Ökonomie

Die Impfstrategie mit PCV20 dominiert die Impfstrategien PCV13+PPSV23, PCV15 sowie PCV15+PPSV23, d.h. PCV20 wäre effektiver und könnte aus gesellschaftlicher Sicht Kosten senken. Im Vergleich zu PPSV23 könnten durch Impfung mit PCV20 1.368 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 41.131 Euro pro gewonnenem QALY betragen. Das ICER der sequentiellen Impfung PCV20+PPSV23 (Vergleich mit PCV20) würde sich auf 137.108 Euro pro gewonnenem QALY belaufen.

Tabelle 36: Ergebnisse Szenario III.b3

Wechsel auf PCV15-Kinderimpfung im Januar 2024 unter Annahme einer längeren Wirkdauer der PCV15-Kinderimpfung gegen Trägerschaft von Serotyp 3, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: keine Grunderkrankungen

Szenario III.b3	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	448	236	150	n/a	n/a	315	220	828	99	1.331	35	1.064
Vermiedene stationäre NBPP-Fälle	687	463	324	n/a	n/a	602	450	1.690	150	2.778	52	2.194
Vermiedene ambulante NBPP-Fälle	5.140	2.919	1.660	n/a	n/a	3.847	2.486	9.720	1.051	15.334	412	12.393
Vermiedene Sterbefälle	149	95	68	n/a	n/a	128	98	346	33	569	11	449
Gewonnene Lebensjahre	3.005	1.709	1.094	n/a	n/a	2.322	1.645	5.925	649	9.517	224	7.604
Gewonnenen QALYs	2.897	1.580	1.005	n/a	n/a	2.141	1.509	5.479	706	9.039	208	7.265
NNV zur Vermeidung einer Hospitalisierung	1.651	2.680	3.940	n/a	n/a	2.043	2.792	744	7.514	456	21.509	575
NNV zur Vermeidung eines Sterbefalls	12.561	19.773	27.568	n/a	n/a	14.648	19.097	5.420	55.858	3.295	162.790	4.178
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	n/a	n/a	keine Impfung	PPSV23	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	67.983.857	128.207.770	128.000.279	n/a	n/a	139.680.866	139.473.375	139.680.866	67.776.366	139.680.866	67.776.366	139.680.866
Vermiedene direkte Krankheitskosten (€)	7.127.172	4.118.517	2.669.732	n/a	n/a	5.420.735	3.825.341	14.520.907	1.545.771	23.466.245	546.916	18.697.364
Vermiedene indirekte Krankheitskosten (€)	5.751.429	2.869.306	1.131.008	n/a	n/a	3.623.935	1.768.676	8.163.537	1.054.428	12.078.734	422.527	10.080.985
Zusätzliche gesellschaftliche Kosten (€)	55.105.256	121.219.947	124.199.539	n/a	n/a	130.636.196	133.879.358	116.996.422	65.176.167	104.135.887	66.806.924	110.902.517
Gewonnenen QALYs diskontiert mit 3%	1.733	919	553	n/a	n/a	1.247	845	3.101	412	5.057	123	4.084
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	49.390.218	106.989.598	108.632.194	n/a	n/a	115.481.613	117.339.721	105.644.623	56.527.957	96.556.597	57.766.230	101.312.494
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	28.498	116.367	196.467	n/a	n/a	92.603	138.912	34.070	137.108	19.094	471.068	24.807

5.4.8.4 Ergebnisse Szenario III.b4: Wechsel auf PCV20-Kinderimpfung im Januar 2024

Epidemiologie

In Szenario III.b4 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 145 IPD-Fälle, 381 Hospitalisierungen durch NBPP sowie 78 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 58 IPD-Fälle, 112 Hospitalisierungen durch NBPP sowie 23 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 92 IPD-Fälle, 105 Hospitalisierungen durch NBPP sowie 26 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 104 IPD-Fälle, 133 Hospitalisierungen durch NBPP sowie 32 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 134 IPD-Fälle, 204 Hospitalisierungen durch NBPP sowie 45 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 193 IPD-Fälle, 318 Hospitalisierungen durch NBPP sowie 85 krankheitsbedingte Sterbefälle vermieden werden. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 221 IPD-Fälle, 358 Hospitalisierungen durch NBPP sowie 94 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 624 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 94.379 Euro pro gewonnenem QALY liegen würde. Durch die sequentielle Impfung PCV20+PPSV23 könnten im Vergleich zu PCV13+PPSV23 170 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 53.752 Euro pro gewonnenem QALY betragen. PCV20+PPSV23 würde die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 558 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 100.025 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentielle Impfung PCV13+PPSV23 erweitert dominieren und PCV20+PPSV23 dominieren. Durch die sequentielle Impfung PCV15+PPSV23 könnten gegenüber PCV15 noch einmal 667 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 82.755 Euro pro gewonnenem QALY betragen.

Tabelle 37: Ergebnisse Szenario III.b4

Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: keine Grunderkrankungen

Szenario III.b4	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	282	348	171	369	162	621	162	428	134	1.099	35	743
Vermiedene stationäre NBPP-Fälle	413	640	259	682	245	1.112	245	794	204	2.239	52	1.467
Vermiedene ambulante NBPP-Fälle	3.151	4.395	1.840	4.646	1.733	7.569	1.733	5.343	1.426	12.874	417	8.931
Vermiedene Sterbefälle	92	138	58	147	55	255	55	170	45	466	12	307
Gewonnene Lebensjahre	1.881	2.663	1.133	2.816	1.068	4.813	1.068	3.235	881	8.026	227	5.485
Gewonnenen QALYs	1.887	2.457	1.193	2.598	1.132	4.420	1.132	2.987	958	7.738	210	5.380
NNV zur Vermeidung einer Hospitalisierung	2.696	1.896	4.340	1.782	4.596	1.082	4.596	1.534	5.529	561	21.266	848
NNV zur Vermeidung eines Sterbefalls	20.349	13.552	32.312	12.753	34.209	7.353	34.209	11.021	41.090	4.021	161.076	6.100
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Impfkosten	67.983.857	128.207.770	128.000.279	139.680.866	139.473.375	139.680.866	67.776.366	139.680.866	67.776.366	139.680.866	67.776.366	139.680.866
Vermiedene direkte Krankheitskosten (€)	4.413.719	5.982.696	4.257.041	6.352.027	4.474.399	10.423.024	2.536.090	7.355.675	2.099.632	19.278.130	553.425	12.949.631
Vermiedene indirekte Krankheitskosten (€)	3.653.382	5.028.734	3.285.366	5.259.997	3.393.851	7.325.730	1.787.236	5.942.445	1.421.737	11.244.026	429.226	8.513.787
Zusätzliche gesellschaftliche Kosten (€)	59.916.756	117.196.340	120.457.872	128.068.842	131.605.125	121.932.112	63.453.040	126.382.746	64.254.997	109.158.709	66.793.715	118.217.448
Gewonnenen QALYs diskontiert mit 3%	1.135	1.443	1.012	1.527	1.058	2.557	667	1.759	558	4.373	124	3.077
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	53.137.252	103.800.583	105.606.137	113.385.814	115.416.920	108.927.640	55.168.358	112.046.149	55.832.370	99.853.492	57.755.175	106.246.809
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	46.820	71.917	104.312	74.266	109.041	42.608	82.755	63.696	100.025	22.835	465.119	34.526

5.4.8.5 Ergebnisse Szenario III.b5: Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall

Epidemiologie

In Szenario III.b5 wäre die sequentielle Impfung PCV20+PPSV23 hinsichtlich der Vermeidung von Pnk-Erkrankungen und krankheitsbedingten Sterbefällen am effektivsten (ausgenommen PCV21 und MAPS24), sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Sollte die Wirkdauer bei PCV15 gegen Serotyp 3 etwa doppelt so lange sein wie bei PCV20, dann wäre die sequentielle Impfung PCV15+PPSV23 hinsichtlich der oben genannten Outcomes am effektivsten.

Bei einer Impfung von 30% aller 60-Jährigen im Zeitraum von 2024-2033 könnten mit PCV20 im Vergleich zu PPSV23 zusätzlich 39 IPD-Fälle, 192 Hospitalisierungen durch NBPP sowie 34 krankheitsbedingte Sterbefälle verhindert werden und verglichen mit PCV15 (bei vergleichbarer Effektivität gegen Serotyp 3) 58 IPD-Fälle, 112 Hospitalisierungen durch NBPP sowie 23 krankheitsbedingte Sterbefälle. Verglichen mit den sequentiellen Impfungen würden durch die Impfung mit PCV20 weniger Pnk-Erkrankungen und krankheitsbedingte Sterbefälle vermieden: vs. PCV13+PPSV23 92 IPD-Fälle, 105 Hospitalisierungen durch NBPP sowie 26 krankheitsbedingte Sterbefälle weniger; vs. PCV15+PPSV23 bzw. 104 IPD-Fälle, 133 Hospitalisierungen durch NBPP sowie 32 krankheitsbedingte Sterbefälle weniger; vs. PCV20+PPSV23 134 IPD-Fälle, 204 Hospitalisierungen durch NBPP sowie 45 krankheitsbedingte Sterbefälle weniger.

Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelt so lange Wirkdauer) könnten durch PCV15 im Vergleich zu PCV20 zusätzlich 5 IPD-Fälle sowie 4 krankheitsbedingte Sterbefälle vermieden werden, jedoch würde die Anzahl der Hospitalisierungen durch NBPP um 4 steigen. Durch die sequentielle Impfung PCV15+PPSV23 könnten im Vergleich zur sequentiellen Impfung PCV20+PPSV23 33 IPD-Fälle, 36 Hospitalisierungen durch NBPP sowie 13 krankheitsbedingte Sterbefälle verhindert werden.

Ökonomie

Im Vergleich zu PPSV23 könnten durch eine Impfung mit PCV20 90 QALYs (diskontiert mit 3%) gewonnen werden, wobei das ICER bei 692.390 Euro pro gewonnenem QALY liegen würde. Durch die sequentielle Impfung PCV20+PPSV23 könnten im Vergleich zu PCV13+PPSV23 170 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 53.752 Euro pro gewonnenem QALY betragen. Zudem würde PCV20+PPSV23 die sequentielle Impfung PCV15+PPSV23 dominieren, sofern PCV15 nicht substantiell effektiver gegen Serotyp 3 ist. Gegenüber PCV20 könnten mit der sequentiellen Impfung PCV20+PPSV23 zusätzlich 558 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde sich auf 100.025 Euro pro gewonnenem QALY belaufen. Sollte PCV15 substantiell effektiver gegen Serotyp 3 sein als PCV20 (doppelte Wirkdauer), dann würde PCV15 die Impfung mit PCV20 dominieren und PCV15+PPSV23 die sequentielle Impfung PCV13+PPSV23 erweitert dominieren sowie PCV20+PPSV23 dominieren. Gegenüber PCV15 könnten durch PCV15+PPSV23 noch einmal 667 QALYs (diskontiert mit 3%) gewonnen werden. Das ICER würde 82.755 Euro pro gewonnenem QALY betragen.

Tabelle 38: Ergebnisse Szenario III.b5

Wechsel auf PCV20-Kinderimpfung im Januar 2024, Effektivität der Erwachsenenimpfung gegen Serotyp 3 um 75% geringer als im Basisfall, Effektivität der Erwachsenenimpfung gegen Serotyp 3 wie im Basisfall, Serotypenverteilung bei NBPP wie bei IPD, Risikogruppen: keine Grunderkrankungen

Szenario III.b5	PPSV23	PCV13	PCV13 +PPSV23	PCV15	PCV15 +PPSV23	PCV15_S3+	PCV15_S3+ +PPSV23	PCV20	PCV20 +PPSV23	PCV21	PCV21 +PPSV23	MAPS24
Epidemiologie: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PCV13	keine Impfung	PCV15	keine Impfung	PCV15_S3+	keine Impfung	PCV20	keine Impfung	PCV21	keine Impfung
Vermiedene IPD-Fälle	255	215	171	236	162	299	162	295	134	966	35	610
Vermiedene stationäre NBPP-Fälle	390	429	259	471	245	578	245	582	204	2,028	52	1,255
Vermiedene ambulante NBPP-Fälle	2,956	2,630	1,840	2,881	1,733	3,612	1,733	3,578	1,426	11,109	417	7,166
Vermiedene Sterbefälle	84	86	58	95	55	122	55	118	45	414	12	255
Gewonnene Lebensjahre	1,689	1,518	1,133	1,671	1,068	2,170	1,068	2,090	881	6,880	227	4,339
Gewonnenen QALYs	1,711	1,404	1,193	1,545	1,132	2,001	1,132	1,934	958	6,685	210	4,327
NNV zur Vermeidung einer Hospitalisierung	2,903	2,912	4,340	2,651	4,596	2,137	4,596	2,138	5,529	626	21,266	1,005
NNV zur Vermeidung eines Sterbefalls	22,400	21,722	32,312	19,740	34,209	15,371	34,209	15,876	41,090	4,526	161,076	7,344
Ökonomisch: Ergebnisse im Vergleich zu	keine Impfung	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PPSV23	keine Impfung	PCV21	keine Impfung
Impfkosten	67,983,857	128,207,770	128,000,279	139,680,866	139,473,375	139,680,866	139,473,375	139,680,866	139,473,375	139,680,866	67,776,366	139,680,866
Vermiedene direkte Krankheitskosten (€)	4,060,314	3,759,865	2,387,615	4,129,196	2,604,973	5,146,945	3,622,722	5,132,843	3,172,162	17,055,299	553,425	10,726,799
Vermiedene indirekte Krankheitskosten (€)	3,327,315	2,441,624	1,024,322	2,672,887	1,132,807	3,189,320	1,649,241	3,355,335	1,449,756	8,656,916	429,226	5,926,676
Zusätzliche gesellschaftliche Kosten (€)	60,596,229	122,006,282	124,588,342	132,878,784	135,735,595	131,344,601	134,201,413	131,192,688	134,851,457	113,968,652	66,793,715	123,027,391
Gewonnenen QALYs diskontiert mit 3%	1,026	800	478	884	524	1,141	782	1,116	648	3,730	124	2,434
Zusätzliche gesell. Kosten (€) diskontiert mit 3%	53,701,940	107,703,211	108,944,076	117,288,441	118,754,860	116,173,898	117,640,316	115,948,776	118,079,206	103,756,120	57,755,175	110,149,436
Zusätzliche gesell. Kosten (€) pro gewonnenem QALY	52,338	134,596	227,853	132,737	226,542	101,812	150,502	103,901	182,198	27,819	465,119	45,251

6 Zusammenfassung und Schlussfolgerungen

Effektivität

Unter der Annahme, dass die Wirksamkeit der höhervalenten Pneumokokken-Konjugatimpfstoffe gegen Vakzine-Serotypen vergleichbar zur Wirksamkeit von PCV13 ist, zeigen die Modellsimulationen, dass die Immunisierung von 60-Jährigen mit PCV20 hinsichtlich der Vermeidung von Pnk-Erkrankungen sowie Hospitalisierungen und Sterbefälle aufgrund von IPD und NBPP in allen 30 Szenarien effektiver als PPSV23 oder PCV15 wäre. Dies gilt auch für die Worst Case Szenarien, in denen die Kinder mit PCV20 geimpft werden und die Effektivität gegen Serotyp 3 noch einmal um 75% gegenüber der Basisfallannahme reduziert wurde. Gegenüber PPSV23 könnte eine Impfung der 60-Jährigen mit PCV20 bei einer Fortführung der Kinderimpfung mit PCV13 oder einem Wechsel auf PCV15 im Januar 2024 mindestens 2,2-mal so viele Hospitalisierungen und mindestens 2,3-mal so viele vorzeitige Sterbefälle durch IPD oder NBPP verhindern, bei einem Wechsel der Kinderimpfung auf PCV20 im Januar 2024 etwa 1,3-1,7-mal so viele Hospitalisierungen und Sterbefälle.

Auch wenn die Wirkdauer von PCV15 gegen Serotyp 3 doppelt so lange anhalten würde wie bei PCV20, könnten bei einer Fortführung der Kinderimpfung mit PCV13 oder einem Wechsel auf PCV15 im Januar 2024 mindestens 1,7-mal so viele Hospitalisierungen und Sterbefälle durch die Impfung von 60-Jährigen mit PCV20 im Vergleich zu PCV15 vermieden werden. Bei einer Kinderimpfung mit PCV20 wäre PCV15 in diesem Fall jedoch überlegen. Wäre die Effektivität gegen Serotyp 3 vergleichbar, dann könnten durch eine Impfung der 60-Jährigen mit PCV20 anstelle von PCV15 bei einem Wechsel der Kinderimpfung auf PCV20 etwa 1,15-1,35-mal so viele Hospitalisierungen und vorzeitige Sterbefälle durch IPD und NBPP verhindert werden.

Im Vergleich zu PCV20 würde die sequentielle Impfung mit PCV20+PPSV23 bei einem Wechsel der Kinderimpfung auf PCV20 die größten zusätzlichen Effekte bieten, sowohl absolut als auch prozentual (etwa 25%-35% mehr vermiedene Hospitalisierungen und Sterbefälle aufgrund von IPD und NBPPP). Bei einer Fortführung der PCV13-Kinderimpfung könnten durch PCV20+PPSV23 etwa 7%-8% mehr vermeidbare Hospitalisierungen und Sterbefälle verhindert werden.

Effizienz

Bei einer Fortführung der Kinderimpfung mit PCV13 oder einem Wechsel auf PCV15 im Januar 2024 wäre die Anzahl der 60-Jährigen, die bei der sequentiellen Impfung PCV20+PPSV23 zusätzlich mit PPSV23 geimpft werden müsste, um eine Hospitalisierung oder einen Sterbefall durch IPD oder NBPP zu vermeiden, mehr als 10-mal so hoch verglichen mit der alleinigen Impfung mit PCV20. Bei einem Wechsel der Kinderimpfung auf PCV20 im Januar 2024 wäre die Anzahl der Personen, die zur Vermeidung einer Hospitalisierung oder eines Sterbefalls durch IPD oder NBPP zusätzlich mit PPSV23 geimpft werden müssten, etwa 2,6-3,8-mal so hoch wie bei der alleinigen Impfung mit PCV20.

Kosteneffektivität

Da für PCV15 und PCV20 ein identischer Preis angenommen wurde, würde die Impfung von 60-Jährigen mit PCV20 jene mit PCV15 in allen 30 Szenarien dominieren, wenn die Effektivität der beiden Impfstoffe gegen Vakzine-Serotypen vergleichbar wäre. Wäre die Wirkdauer gegen Serotyp 3 bei PCV15 doppelt so lange wie bei PCV20, dann würde PCV20 eine Impfung der 60-Jährigen mit PCV15 ebenfalls dominieren, sofern kein Wechsel der Kinderimpfung auf PCV20 erfolgt. Andernfalls würde die Impfung der 60-Jährigen mit PCV15 jene mit PCV20 dominieren.

In den Worst Case Szenarien für die Impfung von 60-Jährigen mit PCV20 (Wechsel der Kinderimpfung auf PCV20 im Januar 2024, Wirksamkeit der Impfung gegen Serotyp 3 gegenüber dem Basisfall um 75% reduziert) würde das ICER der Vakzine im Vergleich zur Impfung mit PPSV23 jeweils bei über 100.000 Euro pro gewonnenem QALY liegen und in der Population ohne Grunderkrankungen auf knapp 700.000 Euro ansteigen. In zwei weiteren Szenarien (jeweils Wechsel der Kinderimpfung auf PCV20 in der Population ohne Grunderkrankungen) würde das ICER zwischen 50.000-100.000 Euro pro gewonnenem QALY betragen und in allen übrigen Szenarien unter 50.000 Euro pro QALY.

Unter Berücksichtigung der sequentiellen Impfung PCV20+PPSV23 würde die alleinige Impfung der 60-Jährigen mit PCV20 in den Worst Case Szenarien (für PCV20) erweitert dominiert. Ansonsten würde das ICER der sequentiellen Impfung PCV20+PPSV23 in der Population der Nicht-Immunsupprimierten im Vergleich zur alleinigen Impfung mit PCV20 jeweils zwischen 50.000-100.000 Euro liegen und in der Population ohne Grunderkrankungen jeweils zwischen 100.000-200.000 Euro.

Abschließende Bewertung und Ausblick

Die alleinige Impfung der 60-Jährigen mit PCV20 wäre unter der Annahme einer vergleichbaren Effektivität der Konjugatimpfstoffe gegen Vakzine-Serotypen in allen simulierten Szenarien effektiver als PPSV23 und PCV15 bezogen auf die Vermeidung von Hospitalisierungen und Sterbefälle durch IPD und NBPP. Zudem wäre die alleinige Impfung mit PCV20 in allen Szenarien bzgl. der Anzahl der Personen, die zur Vermeidung einer Hospitalisierung oder eines Sterbefalls, geimpft werden müssten deutlich effizienter als die zusätzliche Dosis PPSV23 der entsprechenden sequentiellen Impfung mit PCV20+PPSV23. Trotz des deutlich niedrigeren Preises von PPSV23 wäre auch das ICER von PCV20 im Vergleich zu keiner Impfung in allen simulierten Szenarien mit Ausnahme der Worst Case Szenarien geringer als das ICER der sequentiellen Impfung mit PCV20+PPSV23 im Vergleich zur alleinigen Impfung mit PCV20. Mit Ausnahme der Worst Case sowie zwei weiteren Szenarien (jeweils Wechsel der Kinderimpfung auf PCV20 in der Population ohne Grunderkrankungen) würde das ICER der alleinigen Impfung der 60-Jährigen mit PCV20 verglichen mit der alleinigen Impfung mit PPSV23 bei gegebenen Preisannahmen zu den Vakzinen jeweils unter 50.000 Euro pro gewonnenem QALY liegen.

Solange eine substantiell höhere Effektivität bzw. Dauer der Wirksamkeit von PCV15 im Vergleich zu PCV20 gegen Pneumokokken-Infektionen verursacht durch Serotyp 3 nicht belegt ist, wäre eine PCV20-basierte Impfstrategie nach den Modellierungsergebnissen einer alleinigen Impfung mit PPSV23 oder PCV15-basierten Impfstrategien vorzuziehen. Unter Effizienzgesichtspunkten wäre dabei die alleinige Impfung mit PCV20 gegenüber der sequentiellen Impfung mit PCV20+PPSV23 zu präferieren.

Sowohl die Preisentwicklung der einzelnen Vakzine, die Effektivität gegen individuelle Serotypen (insbesondere Serotyp 3 und zusätzlich bei PCV20 Serotyp 8) als auch die Entwicklung der Epidemiologie bei der Etablierung einer Kinderimpfung mit höhervalenten Konjugatimpfstoffen, insbesondere PCV20, sollten kontinuierlich überwacht und ggf. Modellierungsupdates durchgeführt werden, sofern die Entwicklungen zu stark von den Modellannahmen abweichen.

Verlaufen die Wirksamkeitsstudien zu PCV21 und MAPS24 erfolgreich, sollten diese Vakzinen zur Immunisierung älterer Erwachsener zwingend im Vergleich zu PCV15, PCV20 und PPSV23 evaluiert werden. In allen simulierten Szenarien war der Anteil der durch PCV21 potentiell vermeidbaren Pnk-Erkrankungen am höchsten, gefolgt von MAPS24. Unter der Annahme, dass die Effektivität der PCVs sowie MAPS24 gegen Vakzine-Serotypen vergleichbar ist, wäre PCV21 den anderen berücksichtigten Impfstrategien, mit Ausnahme der sequentiellen Impfung PCV21+PPSV23, hinsichtlich epidemiologischer Outcomes in allen Szenarien deutlich überlegen. Die sequentielle Impfstrategie PCV21+PPSV23 würde allerdings nur einen sehr geringen

Zusatznutzen bezogen auf vermiedene Pnk-Krankheitsfälle, -Hospitalisierungen und -Sterbefälle gegenüber der alleinigen Impfung mit PCV21 aufweisen.

Unter den Annahmen einer vergleichbaren Effektivität gegen Vakzine-Serotypen und eines vergleichbaren Preises von PCV15, PCV20, PV21 und MAPS24 wäre PCV21 gegenüber den anderen Vakzinen kostensparend.

7 Literaturverzeichnis

- 1. O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009;374:893–902. doi:10.1016/S0140-6736(09)61204-6.
- 2. Pletz MW, Baum H von, van der Linden M, Rohde G, Schütte H, Suttorp N, Welte T. The burden of pneumococcal pneumonia experience of the German competence network CAPNETZ. Pneumologie. 2012;66:470–5. doi:10.1055/s-0032-1310103.
- 3. Statistisches Bundesamt. Diagnosedaten der Krankenhäuser 2019. http://www.gbe-bund.de/gbe10/i?i=594:25930562D. Accessed 31 Mar 2023.
- 4. van der Linden M, Imöhl M, Perniciaro S. Limited indirect effects of an infant pneumococcal vaccination program in an aging population. PLoS One. 2019;14:e0220453. doi:10.1371/journal.pone.0220453.
- 5. Reinert RR, Haupts S, van der Linden M, Heeg C, Cil MY, Al-Lahham A, Fedson DS. Invasive pneumococcal disease in adults in North-Rhine Westphalia, Germany, 2001-2003. Clin Microbiol Infect. 2005;11:985–91. doi:10.1111/j.1469-0691.2005.01282.x.
- 6. van Hoek AJ, Andrews N, Waight PA, George R, Miller E. Effect of serotype on focus and mortality of invasive pneumococcal disease: coverage of different vaccines and insight into non-vaccine serotypes. PLoS One. 2012;7:e39150. doi:10.1371/journal.pone.0039150.
- Kuhlmann A, Treskova M, Schulenburg J-M von der. Pneumokokkenerkrankungen bei Erwachsenen: Gesundheitsökonomische Evaluation unterschiedlicher Impfszenarien in Deutschland. 2016. https://www.rki.de/DE/Content/Infekt/Impfen/Forschungsprojekte/abgeschlossene_Projekte/Pneumokokkenerkrankungen/Abschlussbericht.pdf?__blob=publicationFile. Accessed 31 Mar 2023.
- 8. Welte T. New antibiotic development: the need versus the costs. Lancet Infect Dis. 2016;16:386–7. doi:10.1016/S1473-3099(16)00068-2.
- 9. Welte T. Pneumococcal Conjugate Vaccine--Equally Effective for Everyone? Dtsch Arztebl Int. 2016;113:137–8. doi:10.3238/arztebl.2016.0137.
- 10. Hussain M, Melegaro A, Pebody RG, George R, Edmunds WJ, Talukdar R, et al. A longitudinal household study of Streptococcus pneumoniae nasopharyngeal carriage in a UK setting. Epidemiol Infect. 2005;133:891–8. doi:10.1017/S0950268805004012.
- 11. Shiri T, Datta S, Madan J, Tsertsvadze A, Royle P, Keeling MJ, et al. Indirect effects of childhood pneumococcal conjugate vaccination on invasive pneumococcal disease: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e51-e59. doi:10.1016/S2214-109X(16)30306-0.
- 12. Weinberger R, Kries R von, van der Linden M, Rieck T, Siedler A, Falkenhorst G. Invasive pneumococcal disease in children under 16 years of age: Incomplete rebound in incidence after the maximum effect of PCV13 in 2012/13 in Germany. Vaccine. 2018;36:572–7. doi:10.1016/j.vaccine.2017.11.085.
- 13. Bahrs C, Kesselmeier M, Kolditz M, Ewig S, Rohde G, Barten-Neiner G, et al. A longitudinal analysis of pneumococcal vaccine serotypes in pneumonia patients in Germany. Eur Respir J 2022. doi:10.1183/13993003.02432-2021.
- 14. Forstner C, Kolditz M, Kesselmeier M, Ewig S, Rohde G, Barten-Neiner G, et al. Pneumococcal conjugate serotype distribution and predominating role of serotype 3 in German adults with community-acquired pneumonia. Vaccine. 2020;38:1129–36. doi:10.1016/j.vaccine.2019.11.026.
- 15. Linley E, Bell A, Gritzfeld JF, Borrow R. Should Pneumococcal Serotype 3 Be Included in Serotype-Specific Immunoassays? Vaccines (Basel) 2019. doi:10.3390/vaccines7010004.
- 16. Suzuki M, Dhoubhadel BG, Ishifuji T, Yasunami M, Yaegashi M, Asoh N, et al. Serotype-specific effectiveness of 23-valent pneumococcal polysaccharide vaccine against pneumococcal pneumonia in adults aged

- 65 years or older: a multicentre, prospective, test-negative design study. Lancet Infect Dis. 2017;17:313–21. doi:10.1016/S1473-3099(17)30049-X.
- 17. Andrews NJ, Waight PA, George RC, Slack MPE, Miller E. Impact and effectiveness of 23-valent pneumococcal polysaccharide vaccine against invasive pneumococcal disease in the elderly in England and Wales. Vaccine. 2012;30:6802–8. doi:10.1016/j.vaccine.2012.09.019.
- 18. Djennad A, Ramsay ME, Pebody R, Fry NK, Sheppard C, Ladhani SN, Andrews NJ. Effectiveness of 23-Valent Polysaccharide Pneumococcal Vaccine and Changes in Invasive Pneumococcal Disease Incidence from 2000 to 2017 in Those Aged 65 and Over in England and Wales. EClinicalMedicine. 2018;6:42–50. doi:10.1016/j.eclinm.2018.12.007.
- 19. Bowles D, Zuchandke A. Entwicklung eines Modells zur Bevölkerungsprojektion: Modellrechnungen zur Bevölkerungsentwicklung bis 2060. Hannover: Leibniz Univ. Wirtschaftswiss. Fak; 2012.
- 20. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLoS Med. 2008;5:e74. doi:10.1371/journal.pmed.0050074.
- 21. Högberg L, Geli P, Ringberg H, Melander E, Lipsitch M, Ekdahl K. Age- and serogroup-related differences in observed durations of nasopharyngeal carriage of penicillin-resistant pneumococci. J Clin Microbiol. 2007;45:948–52. doi:10.1128/JCM.01913-06.
- 22. Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J Infect Dis. 2003;187:1424–32. doi:10.1086/374624.
- 23. Choi YH, Jit M, Flasche S, Gay N, Miller E. Mathematical modelling long-term effects of replacing Prevnar7 with Prevnar13 on invasive pneumococcal diseases in England and Wales. PLoS One. 2012;7:e39927. doi:10.1371/journal.pone.0039927.
- 24. IMS Health Deutschland. Verschreibungsindex für Pharmazeutika (VIP) (unpublished). 2009.
- 25. Rieck T, Steffen A, Feig M, Siedler A. Impfquoten bei Erwachsenen in Deutschland Aktuelles aus der KV-Impfsurveillance. Epid Bull. 2022;49:3–23. doi:10.25646/10855.
- 26. van Werkhoven CH, Huijts SM, Bolkenbaas M, Grobbee DE, Bonten MJM. The Impact of Age on the Efficacy of 13-valent Pneumococcal Conjugate Vaccine in Elderly. Clin Infect Dis. 2015;61:1835–8. doi:10.1093/cid/civ686.
- 27. Savulescu C, Krizova P, Valentiner-Branth P, Ladhani S, Rinta-Kokko H, Levy C, et al. Effectiveness of 10 and 13-valent pneumococcal conjugate vaccines against invasive pneumococcal disease in European children: SpIDnet observational multicentre study. Vaccine. 2022;40:3963–74. doi:10.1016/j.vaccine.2022.05.011.
- 28. Braun S, Prenzler A, Mittendorf T, Schulenburg JM von der. Bewertung von Ressourcenverbräuchen im deutschen Gesundheitswesen aus Sicht der Gesetzlichen Krankenversicherung. Gesundheitswesen. 2009;71:19–23. doi:10.1055/s-0028-1102930.
- 29. Lauertaxe. Arzneimittelpreise. 2018. https://www.lauer-fischer.de/LF/Seiten/.
- 30. Melegaro A, Edmunds WJ. Cost-effectiveness analysis of pneumococcal conjugate vaccination in England and Wales. Vaccine. 2004;22:4203–14. doi:10.1016/j.vaccine.2004.05.003.
- 31. Mangen M-JJ, Huijts SM, Bonten MJM, Wit GA de. The impact of community-acquired pneumonia on the health-related quality-of-life in elderly. BMC Infect Dis. 2017;17:208. doi:10.1186/s12879-017-2302-3.
- 32. Jit M. The risk of sequelae due to pneumococcal meningitis in high-income countries: a systematic review and meta-analysis. J Infect. 2010;61:114–24. doi:10.1016/j.jinf.2010.04.008.
- 33. Bonten MJM, Huijts SM, Bolkenbaas M, Webber C, Patterson S, Gault S, et al. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N Engl J Med. 2015;372:1114–25. doi:10.1056/NEJMoa1408544.

- 34. van Hoek AJ, Andrews N, Waight PA, Stowe J, Gates P, George R, Miller E. The effect of underlying clinical conditions on the risk of developing invasive pneumococcal disease in England. J Infect. 2012;65:17–24. doi:10.1016/j.jinf.2012.02.017.
- 35. Kühne F, Achtert K, Püschner F, Urbanski-Rini D, Schiller J, Mahar E, et al. Cost-effectiveness of use of 20-valent pneumococcal conjugate vaccine among adults in Germany; 2023.