Navigation and service

Abstract zur Publikation: Reconstitution of an apicoplast-localised electron transfer pathway involved in the isoprenoid biosynthesis of Plasmodium falciparum

Röhrich RC, Englert N, Troschke K, Reichenberg A, Hintz M, Seeber F, Balconi E, Aliverti A, Zanetti G, Köhler U, Pfeiffer M, Beck E, Jomaa H, Wiesner J (2005): Reconstitution of an apicoplast-localised electron transfer pathway involved in the isoprenoid biosynthesis of Plasmodium falciparum.
FEBS Lett. 579 (28): 6433-6438. Epub 2005 Nov 2.

In the malaria parasite Plasmodium falciparum isoprenoid precursors are synthesised inside a plastid-like organelle (apicoplast) by the mevalonate independent 1-deoxy-d-xylulose-5-phosphate (DOXP) pathway. The last reaction step of the DOXP pathway is catalysed by the LytB enzyme which contains a [4Fe–4S] cluster. In this study, LytB of P. falciparum was shown to be catalytically active in the presence of an NADPH dependent electron transfer system comprising ferredoxin and ferredoxin-NADP+ reductase. LytB and ferredoxin were found to form a stable protein complex. These data suggest that the ferredoxin/ferredoxin-NADP+ reductase redox system serves as the physiological electron donor for LytB in the apicoplast of P. falciparum.

Gesund­heitsmon­i­tor­ing

In­fek­tion­ss­chutz

Forschung

Kom­mis­sio­nen

Ser­vice

The Robert Koch Institute is a Federal Institute
within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.